簡易檢索 / 詳目顯示

研究生: 謝協伸
Hsieh, Hsieh-Shen
論文名稱: 雷射脈衝引發板材變形及振動之研究
Study of the deformation and vibration of a plate in pulsed laser heating
指導教授: 林震銘
Lin, Jehn-ming
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 176
中文關鍵詞: 雷射成形振動熱應力耦合效應脈衝雷射
外文關鍵詞: thermal stress, coupled effect, pulsed laser, vibration, laser forming
相關次數: 點閱:88下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本文主要以有限元素法模擬雷射成形製程,研究將分成兩個部份,第一部份探討由於不均勻的熱應力產生之穩態變形,另一部份研究急速不均勻的熱應力所產生暫態振動現象,並進一步提出減振控制方法。
    研究中使用CO2雷射,考慮高斯分佈能量形式之固定熱源,加熱於不鏽鋼試件上,使試件產生振動並彎曲變形。在有限元素之穩態變形分析部分,採用三維元素來模擬熱塑變形過程,分析過程將採熱機耦合分析(Coupled thermal-mechanical analysis),進行溫度、變形與殘留應力之分析,並討論由於塑性變形產生的熱量對於變形量的影響;而在暫態振動部分,將使用熱機非耦合分析(Uncoupled thermal-mechanical analysis),將分析過程分為熱傳模式與力學模式兩種,考慮材料的慣性及彈塑性行為,研究由於急速不均勻熱應力所引發之振動行為,並提出一簡單之減振方式。此外將進一步討論不同的加工參數對於穩態變形及暫態振動的影響,並規劃一系列實驗來與分析結果作比較,以驗證有限元素模擬的可行性。
    結果顯示,數值模擬與實驗結果相當接近,在穩態變形部分,雷射成型製程之熱機耦合效應並不明顯,但對局部之應力應變還是有影響,而試件成形角度隨著功率增加、板件厚度減少、光徑的減少、加熱時間增長而增加。在暫態振部分,板件頻率會因熱應力影響而較低頻,板件反彈振幅受下降深度影響,下降深度越大,反彈振幅越大。而板件下降深度隨板件厚度減少、功率及光徑增加、加熱時間增長而變大。此外,本文利用控制多發雷射擊發間隔時間,成功的達成減振效果,且確認對於多發雷射擊發試件振動之行為為非線性振動問題。

    Abstract

    The object of this thesis is to analyze the laser forming processing for a thin metal plate with the finite element method. The thesis was divided into two parts: one is the thermal deformation problem of the thin plates induced by thermal stress and the other is the vibration problem induced by thermal stress with a superposition method to reduce it.

    CO2 laser was used as a pulse energy source to heat the metal plates. The laser beam was focused on 304 stainless steel plates as a point heat source. In the analysis of the thermal deformation of the thin plates, the plate deformation was simulated numerically and verified experimentally. The non-linear finite element method software, ABAQUS, was used to simulate the deformation problem of the coupled thermal-mechanical system in three dimensions. The time-dependent temperatures, stresses, strains and bending angles during the forming process were calculated. The process parameters affecting the bending angles were also investigated.

    In the analysis of the vibration problem induced by thermal stress, the plate vibration was simulated and measured. The non-linear finite element method solved by ABAQUS, was used to simulate the thermo-mechanical problem in three dimensions. The time-dependent temperatures, and displacement during the process were calculated. The process parameters affecting the displacement were also investigated.

    There is a good agreement between the numerical simulation and the experimental observations in both studies of the plate deformation and vibration. A superposition method with multiple laser pulses was provided to reduce the plate vibration and it was verified with numerical and experimental approaches.

    中文摘要………………………………………………………………Ⅰ 英文摘要………………………………………………………………Ⅲ 誌謝……………………………………………………………………Ⅳ 目錄……………………………………………………………………Ⅴ 表目錄…………………………………………………………………Ⅸ 圖目錄…………………………………………………………………Ⅹ 符號說明………………………………………………………………XVII 第一章 緒論…………………………………………………………1 1.1 研究背景及目的……………………………………….……. 1 1.2 文獻回顧……………………………………………………. 2 1.3 本文架構……………………………………………………. 8 第二章 數值分析理論……………..………………………………9 2.1 傳模型控制方程.……………………………………………. 9 2.1.1 基本假設……………………………………………..… 9 2.1.2 熱傳能量平衡方程…………………………………..… 10 2.1.3 有限元素程式化……………………………………..… 11 2.2 力學模式控制方程………………………………………….. 13 2.2.1 基本假設…………………………………..…………… 13 2.2.2 應力應變增量關係……………………………………….. 13 2.2.2.1 彈性應變增量…………………………………………… 14 2.2.2.2 塑性應變增量…………………………………………… 14 2.2.2.3 熱應變增量…………..……………………….. 17 2.2.3 運動方程式………………………………………….. 18 2.2.4 有限元素程式化…………………………………….. 19 2.3 熱-力學耦合控制方程…………..…………………………..23 2.4 振動理論分析…………………………………..…………… 26 2.4.1 離散系統與連續系統…………………………..…… 26 2.4.2 有限元素法之模態分析..……………………………. 29 2.5分析軟體簡介……………………………………….………. 31 第三章 有限元素分析………………………….……………………33 3.1雷射板金成形之耦合穩態分析………………….…………. 33 3.1.1 試件幾何尺寸與有限元素模型…….………………. 33 3.1.2 材料性質……………………………….……………. 35 3.1.3 入熱條件……………………………………….……. 38 3.1.4 初始條件與邊界條件………….……………………. 40 3.1.5 分析過程…………………………….………………. 42 3.1.6 雷射成形定性描述………………….………………. 43 3.1.7 數值結果……………………………….……………. 45 3.1.8 參數分析與討論……...……………………………... 57 3.1.9 耦合效應……………………..……………....……… 67 3.2雷射板金成形之非耦合暫態分析………………………….. 73 3.2.1 試件幾何尺寸與有限元素模型…………………….. 73 3.2.2 數值模型及相關之初始條件與邊界條件………..… 74 3.2.3 分析過程…………………………………………….. 78 3.2.4 雷射激發結構振動之定性描述……….………..….. 79 3.2.5 數值結果與討論…………………………………….. 81 3.2.6 參數分析與討論…………………..………………… 92 3.2.7減振控制……………………………………………… 102 第四章 雷射板金成形之實驗驗證…………..……………………108 4.1 變形試驗…………………….……………………………… 108 4.1.1 實驗配置與步驟…………………..……………………… 108 4.1.2 實驗結果與討論…………………..……………………… 112 4.1.3 實驗與數值模擬結果比較….………………………………116 4.2 振動試驗……………………………………………………. 122 4.2.1 單脈衝試驗…………………………………………..…… 122 4.2.1.1 實驗配置與加工條件.…………………..…………… 122 4.2.1.2 實驗結果與討論…………….………..……………… 123 4.2.1.3 實驗與數值模擬結果比較….………………………… 130 4.2.1.3.1 實驗與數值模擬結果之驗證………………………… 130 4.2.1.3.2 輸入能量之比較……………………………………… 136 4.2.2 雙脈衝試驗……………………………………………….. 141 4.2.2.1 實驗配置、步驟與加工條件…………………………… 141 4.2.2.2 實驗結果與討論….…..…………………………………142 第五章 綜合討論與建議………….……………………………..…146 5.1綜合討論……………………………………….…………………146 5.2相關建議與未來發展…………………………….………………150 參考文獻………………………………………..……………………152 附錄A ……………………………………………………………….157 附錄B ……………………………………………………………….166 附錄C ……………………………………………………………….168 附錄D ……………………………………………………………….174 自述…………………………………….…………………………….176

    參考文獻

    [1]Namba Y., Laser forming in space, International Conference on Lasers’85, editors: Wang C. P., pp.403-407, 1986.
    [2]Namba Y., Laser forming of metal and alloys, Proceedings of LAMP, Osaka, pp.601-606, 1987.
    [3]Scully K., Laser line heating, Journal of Ship Production 3, 237-246, 1987.
    [4]Geiger M., Vollertsen F. and Deinzer G., Flexible straightening of car body shells by laser forming, Sheet Metal and Stamping Symping Symposium SAE Special Publication, n944, SAE, pp.37-44, 1993.
    [5]Geiger M., Arnet H. and Vollertsen F., Laser forming, Manufacturing Systems, No. 24, Vol. 1, pp.43-47, 1995.
    [6]Yau C. L., Chan K. C. and Lee W. B., Laser bending of lead frame materials, Journal of Materials Processing Technology, Vol. 82, pp.117-121, 1998.
    [7]Widlaszewski J., Precise laser bending, Laser Assisted Net shape Engineering 2 Proceeding of the LAME’97, eds: Geiger M., Vollertsen F., pp.393-398, 1997.
    [8]Silve S., Podschies B., Steen W. M., and Watkins K. G., Laser forming –a new vocabulary for objects, F-ICALEO, pp.87-96, 1999
    [9]Vollertsen F. and Geiger M., The mechanisms of laser forming, Annals of the CIRP, Vol.42, pp.301-304,1993
    [10]Vollertsen F. and Geiger M., FDM and FEM simulation of laser forming: a comparative study, Advanced Technology of Plasticity – Proceeding of the fourth International Conference on Technology of Plasticity, pp.1793-1798, 1993.
    [11]Vollertsen F., An analytical model for laser bending, Lasers in Engineering, Vol. 2, pp.261-276, 1994.
    [12]Vollertsen F. and Rodle M., Model for the temperature gradient mechanism of laser bending, Laser Assisted Net Shape Engineering Proceedings of the LANE, Vol. 1, pp.371-378, 1994.
    [13]Arnet H. and Vollertsen F., Extending laser bending for the generation of convex shapes, J. Eng. Manuf., Vol. 209, pp.433-442, 1995.
    [14]Vollertsen F., Komel I., and R. Kals, The laser bending of steel foils for microparts by the buckling mechanism - a model, Modelling Simulation Material Science, pp.107-119, 1995
    [15]Cheng P.J. and Lin S.C., An analytical model for the temperature field in the laser forming of sheet metal, Journal of Materials Processing Technology, Vol.101, pp.260-267, 2000.
    [16]Cheng P.J., and Lin S.C., An analytical model to estimate angle formed by laser, Journal of Materials Processing Technology, Vol.108, pp.314-319, 2000.
    [17]Kyrsanidi An. K., Kermanidis Th. B. and Pantelakis Sp. G., An analytical model for the prediction of distortions caused by the laser forming process, Journal of Materials Processing Technology, Vol.104, pp.94-102, 2000.
    [18]Lawrence J., Schmidt M. J., and Li L., The forming of mild steel plates with a 2.5KW high power diode laser, International Journal of Machine & Manufacture , Vol.41, pp.967-977, 2001.
    [19]Marya M. and Edwards G. R., A study on the laser forming of near-alpha and metastable beta titanium alloy sheets, Journal of Materials Processing Technology, Vol.108, pp.376-383, 2001.
    [20]Ji Z. and Wu S., FEM simulation of the temperature field during the laser forming of sheet metal, J. Materials Processing Technology, Vol. 74, pp.89-95, 1998.
    [21]Kyrsanidi An. K., Kermanidis Th. B. and Pantelakis Sp. G., Numerical and experimental investigation of the laser forming process, J. Materials Processing Technology, Vol. 87, pp281-290, 1999.
    [22]Thomas H., Development of irradiation strategies for 3D-laser forming, J. Materials Processing Technology, Vol. 103, pp.102-108, 2000.
    [23]Li W. C. and Yao Y. L., Buckling based laser forming process:concave or convex, “ICALEO’2000, Laser Material Processing, pp220-229, 2000
    [24]Li W. C. and Yao Y. L., Numerical and experimental investigation of laser induced tube bending, “D-ICALEO’2000, Laser Material Processing, pp53-62, 2000
    [25]Yu G., Masubuchi K., Maekawa T., and Patrikalakis N. M., FEM simulation of laser forming of metal plates, Journal of Manufacturing Science and Engineering ,Vol.123, pp.405-410, 2001
    [26]Wu S. and Ji Z., FEM simulation of the deformation field during the laser forming of sheet metal, Journal of Materials Processing technology, Vol.121, pp.269-272, 2002
    [27]Chen G., Xu X., Poon C. C. and Tam A. C., Experimental and Numerical Studies on Microscale Bending of Stainless Steel with Pulsed Laser, Transactions of the ASME, Vol. 66, pp.772-779, 1999.
    [28]Masses J. E. and Barreau G., Laser generation of stress waves in metal, Surface and Coatings Technology, Vol.70,pp.231-234, 1995
    [29]Peyre P., Fabbro R., Merrien P., and Lieurade H.P., Laser shock processing of aluminum alloys - application to high cycle fatigue behavior, Material Science and Engineer, Vol.210, pp102-113, 1996
    [30]Braisteb W. and Brockman R., Finite element simulation of laser shock peening, International Journal of Fatigue, V0l.21, pp.719-724, 1999
    [31]Kogawa H., Futakawa M., Isikura S., Kikuchi K., Hino R., and Eto M., Inertia effect on thermal shock by laser beam shot, International Journal of Impact Engineering, Vol.25, pp17-28, 2001
    [32]Zhang W. W. and Yao Y. L., Improvement of laser induced residual Stress distributions via shocked waves, “ICALEO’2001, Laser Material Processing,
    [33]Zhang W. W. and Yao Y. L., Modeling and simulation improvement in laser shock processing, “ICALEO’2001, Laser Material Processing,
    [34]Doukas A. G., and Flotte T. J., Physical characteristics and biological effects of laser-induced stress wave, Ultrasound in Medicine and Biology, Vol.22, No.2, pp.151-164
    [35]Philp W. R., Booth D.J., and Peery N.D., Single pulse laser excitation of structure vibration using power density below the Surface Ablation threshold, Journal of Sound and Vibration, no.4, pp.643-654, 1995
    [36]Castellini P., Revel G.M., and Scalise L., Laser pulse excitation for modal analysis, Proceedings of the 17th International Modal Analysis Conference, pp.999-1004, 1999
    [37]Castellini P., Revel G.M., Scalise L., and De Andrade R.M., Experimental and numerical investigation on structural effects of laser pulses for modal parameter measurement, Optics and Lasers in Engineering, pp.565-581, 2000
    [38]ABAQUS Theory Manual, H.K.S. Inc., Pawtuckett, RI, 1998.
    [39]Chen W. F. and Han D. J., Plasticity for Structural Engineers, Springer-Verlag New York Inc., 1988.
    [40]Hsu and Ran T., The Finite Element Method in Thermomechanics, Allen & Unwin ,pp.152-156,
    [41]Kobayashi S., Oh S., Altan T., Metal forming and the finite-element method, Oxford University Press, pp.222-229, 1998
    [42]Getting Started with ABAQUS/Standard, H.K.S. Inc., Pawtuckett, RI, 1998.
    [43]ABAQUS User’s Manual Volume Ⅱ, H.K.S. Inc., Pawtuckett, RI, 1998.
    [44]Ueda Y., Iida K., Saito m. and Okamoto A., Finite element model and residual stress calculation for multi-pass welded joint between a sheet metal and the penetrating pipe, Modeling of Casting, Welding and Advanced Solidification Processes-V, pp.219-227, 1991.
    [45]Peckner D. and Bernstein I. M., Handbook of Stainless Steels, McGraw-Hill, pp.19-3, 1977
    [46]洪志憲, 運用網格重建技術於大型結構焊接之研究, 成功大學機械工程研究所碩士論文, 1995.
    [47]ABAQUS User’s Manual Volume Ⅰ, H.K.S. Inc., Pawtuckett, RI, 1998.
    [48]Brigham and oran E., The Fast Fourier Transform, Prentice-Hall, pp.99-107, 1974
    [49]Meirovitch L., Fundamentals of Vibrations, McGraw-Hill Higher Education, pp.53-57, 2001
    [50]李坤洲, 雷射成型於薄板變形之分析及量測, 成功大學機械工程研究所碩士論文, 2001.
    [51]Anisimov S. I. and Khokhlov V. A., Instabilities in Laser-matter Interaction, Congress Cataloging-in-Publication, pp.35,1995
    [52]Steen W. M., Laser Material Processing, Springer-Verlag, pp.72-75, 1991
    [53]Timoshenko S. and Woinowski-krieger W., Theory of Plates and Shells, Mcgraw-Hill, 1959
    [54]Gorman D. J., Free Vibration Analysis of Rectangular Plates, Elsevier North Holland, pp.1-4, 1982
    [55]Martin A. I., On the vibration of cantilever plate, Quarterly Journal of Mechanics and Applied Mathematics, vol.9, pp.94-102, 1956
    [56]Grinsted B., Nodal pattern analysis, Proceedings of Mechanical Engineers, vol.166, pp.309-326

    下載圖示 校內:2012-07-10公開
    校外:2012-07-10公開
    QR CODE