簡易檢索 / 詳目顯示

研究生: 楊梅玉
Yang, Mei-Yu
論文名稱: 可供大腸桿菌拉曼光譜增顯之基材研究
A SERS substrate for the Raman spectral analysis of E. coli
指導教授: 張憲彰
Chang, Hsien-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 50
中文關鍵詞: 表面增顯拉曼光譜大腸桿菌中孔洞二氧化矽包覆奈米銀銀膠體溶液
外文關鍵詞: Surface-enhanced Raman spectroscopy, Escherichia coli, 16%AgNPs@mesoporousSiO2, Silver colloid solution
相關次數: 點閱:121下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大腸桿菌為常見的感染菌之一,傳統的鑑定方式包括培養法以及生化檢測,但是這些方法往往需要耗費大量時間 (一天以上)。拉曼光譜具有可對細菌進行快速且非侵入性檢測之優勢,藉由不同細菌之指紋圖譜可應用於鑑定,但是細菌之拉曼訊號並不強,而表面增顯拉曼光譜(SERS)可讓某些特徵峰訊號增強,因而近年來此類SERS技術常被用來檢測細菌。本實驗使用一種具有中孔洞二氧化矽包覆奈米銀的複合性材料,其奈米銀的含量為16%,以DTNB為探針分子,發現中孔洞二氧化矽包覆奈米銀可明顯增顯其拉曼散射訊號。吾人將此材料以不同壓力壓製成錠 (100, 200, 300, 400 kg/cm2),配合使用銀膠體溶液與大腸桿菌菌液預混合樣本滴於錠材表面所建立之一套可供快速及有效獲得SERS的鑑定分析法。實驗結果發現,使用壓力愈大,樣本液體被過濾完全所需的時間愈長,而奈米銀預混合的大腸桿菌在錠材上之分布也愈不均勻。因此,吾人使用最佳壓力條件100 kg/cm2為最後錠材的製備規格,以利後續實驗進行大腸桿菌表面增顯拉曼光譜的收集。吾人發現此套基於SERS的鑑定分析法,當奈米銀與大腸桿菌菌液預混合樣本裡的液體被過濾完之後,表面吸附奈米銀之大腸桿菌會以小黑點嵌留於錠材表面,此大腸桿菌受到奈米銀有效包覆下受光產生明顯的SERS,使特徵峰訊號明顯得到提升。相信未來此套鑑定分析法定應能用於大腸桿菌造成的嚴重疾病之臨床輔助診斷上,並且推展至其它致病細菌之診斷與鑑定。

    Escherichia coli (E. coli) is a common cause of human bacterial infections. Classical identification methods for E. coli infection include conventional culture and biochemical tests, in either the clinical diagnostic stage or the species identification stage. Most of these methods are very time-consuming. Raman spectroscopy, a novel microbial detection instrument, can provide a rapid and non-invasive detection of bacteria in several previous studies. However, some characteristic Raman signals are not strong enough for bacterial differentiation because of the limitation in bacterial number for some clinical scenarios. Surface-enhanced Raman spectroscopy (SERS) is an advanced technique to enhance the specific Raman signals, frequently used to identify different bacteria. In this study, 16%AgNPs@mesoporousSiO2, a promising new composite for SERS proved by previous studies, was tested for E. coli identification. A SERS test was carried out by using DTNB as a probing molecule. We found the characteristic Raman signals of DTNB were greatly enhanced through parametric optimization in our experiments. 16%AgNPs@mesoporousSiO2 substrate is fabricated from the best pressure 100 kg/cm2 for following tests because of this conditioned substrate having the optimal location for E. coli, and the fastest filtration rate. The excellent E. coli localization breaks through the conventional detection limit down to 104~105 CFU/mL. The filtration rate promises a powerful clinical application. Pre-mixing silver colloid solution with samples having E. coli were dropped on and filtered by 16%AgNPs@mesoporousSiO2 substrate for E. coli SERS detection. The SERS characteristic signals of E. coli were greatly enhanced and rapidly detected by this novel preparation, silver colloid solution premixing and 16%AgNPs@mesoporousSiO2 filtrating and localizing. In the future, we can expect this assay may be used to identify other bacteria other than E. coli.

    摘要 I Abstract II 誌謝 III Content IV Table list V Figure list VII Chapter 1 Introduction 1 1.1 Introduction to Escherichia coli 1 1.1.1 Bacteria 1 1.1.2 Bacterial cell wall 1 1.1.3 Pathogenicity of E. coli 3 1.1.4 Classical diagnostic methods for E. coli 3 1.2 Raman spectroscopy 8 1.2.1 Principle of Raman spectroscopy 8 1.2.2 Classical theory of Raman scattering 9 1.3 Surface-enhanced Raman spectroscopy 11 1.3.1 Electromagnetic enhancement 12 1.4 Different kinds of SERS substrate of E. coli 14 1.5 Motivation and Objective 16 Chapter 2 Materials and Experiments 18 2.1 Chemical reagents 18 2.2 Test solutions 18 2.3 Instruments 19 2.4 Raman instrument 19 2.5 TSA plates preparation 19 2.6 Preparation of E. coli samples 20 2.7 Preparation of 16%AgNPs@mesoporousSiO2 20 2.8 Fabrication of the gold-coated glass slide 20 2.9 Fabrication of the detected well 21 2.10 Collection of SERS and Raman signals for the detected solutions 21 2.11 Collection of Raman signals of E. coli 22 2.12 Testing of filtered time for 16%AgNPs@mesoporousSiO2 substrates 22 2.13 Collection of SERS signals of E. coli 23 Chapter 3 Results and Discussion 24 3.1 SERS spectra of DTNB 24 3.2 Raman spectra of E. coli 28 3.3 Filtered time of 16%AgNPs@mesoporousSiO2 substrate 29 3.4 SERS signals of E. coli 35 3.5 Detection limit for E. coli 37 Chapter 4 Conclusion and Prospect 39 Reference 40 Appendix 44 A. Original Raman spectra 44 B. SEM images for 16%AgNPs@mesoporous SiO2 substrate 49 C. PCA analysis for Raman Spectra of E. coli and S. aureus 50

    [1] Mahon CR, Lehman DC and Manuselis GM, “Textbook of diagnostic microbiology 3/e”, Saunders Elsevier, Saint-Louis Missouri, 2007
    [2] Beutler B and Rietschel ET, “Innate immune sensing and its roots: the story of endotoxin,” Nature Reviews Immunology, vol. 3, pp. 169-176, 2003.
    [3] Ward KN, McCartney AC and Thakker B, “Notes on medical microbiology including virology, mycology and parasitology 2/e”, Churchill Livingstone, Edinburgh, 2009
    [4] http://www.midlandstech.edu/science/kelleherk/225/labmaterials/sel_diff_media.html
    [5] Smekal A, “Zur Quantentheorie der Dispersion”, Naturwissenschaften, vol. 11, pp. 873-875, 1923.
    [6] Raman CV and Krishnan KS, “A new type of secondary radiation,” Nature, vol. 121, pp. 501-502, 1928
    [7] Smith E and Dent G, “Modern Raman spectroscopy: a practical approach”, John Wiley and Sons, Chichester, 2005
    [8] Lyon LA, Keating CD, Fox AP, Baker BE, He L and Nicewarner SR, “Raman Spectroscopy”, Analytical Chemistry, vol. 70, pp. 341-361, 1998.
    [9] Amer MS, “Raman Spectroscopy, fullerenes and nanotechnology”, Royal Society of Chemistry, UK, 2010
    [10] Fleischmann M, Hendra PJ and Mcquillan AJ, “Raman spectra of pyridine adsorbed at a silver electrode,” Chemical Physics Letters, vol. 26, pp. 163-166, 1974.
    [11] Jeanmaire DL and VanDuyne RP, “Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode”, Journal of Electroanalytical Chemistry, vol. 84, pp. 1-20, 1977
    [12] Albrecht MG and Creighton JA, “Anomalously intense Raman spectra of pyridine at a Silver Electrode,” Journal of the American Chemical Society, vol. 99, pp. 5215-5217, 1977.
    [13] Stiles PL, Dieringer JA, Shah NC and Van Duyne RP, ”Surface-enhanced Raman spectroscopy,” Annual Review of Analytical Chemistry, vol.1, pp. 601-626, 2008.
    [14] Campion A and Kambhampati P, “Surface-enhanced Raman scattering”, Chemical Society Reviews, vol. 27, pp. 241-250, 1998.
    [15] Kneipp K, Kneipp H, Itzkan I, Dasari RR and Feld MS, “Surface-enhanced Raman scattering and biophysics,” Journal of Physics: Condensed Matter, vol. 14, pp. 597–624, 2002.
    [16] Michelle MA, “Surface-enhanced Raman spectroscopy at the single molecule level”, Columbia University, 2000
    [17] Wang HH, Liu CY, Wu SB, Liu NW, Peng CY, Chan TH, Hsu CF, Wang JK and Wang YL, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Advanced Materials, vol. 18, pp. 491-495, 2006.
    [18] Liu TT, Lin YH, Hung CS, Liu TJ, Chen Y, Huang YC, Tsai TH, Wang HH, Wang DW, Wang JK, Wang YL and Lin CH, ”A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall”, PLoS ONE, vol. 4, pp. e5470, 2009.
    [19] Chu HY, Huang YW and Zhao YP, “Silver nanorod arrays as a surface-enhanced Raman scattering substrate for foodborne pathogenic bacteria detection”, Applied Spectroscopy, vol.62, pp. 922-931, 2008.
    [20] Jarvis RM and Goodacre R, “Discrimination of bacteria using surface-enhanced Raman spectroscopy”, Analytical Chemistry, vol. 76, pp. 40-47, 2004.
    [21] Efrima S and Zeiri L, “Understanding SERS of bacteria”, Journal of Raman Spectroscopy, vol. 40, pp. 277-288, 2009.
    [22] Jarvis RM and Goodacre R, “Characterisation and identification of bacteria using SERS”, Chemical Society Reviews, vol. 37, pp. 931-936, 2008.
    [23] Chang HJ, Yang YM, Lin CC, Luo YC, Chang HC, Lin HP, Lin YC, Tang CY and Lin CY “Using gelatin protecting agent and organic template to synthesize noble metal nanoparticles and metal nanoparticles@mesoporous silica for SERS and CO oxidation applications”, Sensors and Materials, vol. 20, pp. 389-396, 2008.
    [24] Laucks ML, Sengupta A, Junge K, Davis EJ and Swanson BD, “Comparison of psychro-active arctic marine bacteria and common mesophillic bacteria using surface-enhanced Raman spectroscopy”, Applied Spectroscopy, vol. 59, pp. 1222-1228, 2005.
    [25] Walter A, Marz A, Schumacher W, Rosch P and Popp J, “Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device”, Lab Chip, vol. 11, pp. 1013-1021, 2011.
    [26] Jarvis RM, Brooker A and Goodacre R, “Surface-enhanced Raman spectroscopy for bacterial discrimination utilizing a scanning electron microscope with a Raman spectroscopy interface”, Analytical Chemistry, vol. 76, pp. 5198-5202, 2004.
    [27] Wang YL, Lee K and Irudayaraj J, “Silver nanosphere SERS probes for sensitive identification of pathogens”, Journal of Physical Chemistry C, vol. 114, pp. 16122-16128, 2010.
    [28] Fan C, Hu ZQ, Mustapha A and Lin MS, “Rapid detection of food- and waterborne bacteria using surface-enhanced Raman spectroscopy coupled with silver nanosubstrates”, Applied Microbiology and Biotechnology, vol. 92, pp. 1053-1061, 2011.
    [29] Kahraman M, Zamaleeva AI, Fakhrullin RF and Culha M, “Layer-by-layer coating of bacteria with noble metal nanoparticles for surface-enhanced Raman scattering”, Analytical and Bioanalytical Chemistry, vol. 395, pp. 2559-2567, 2009.
    [30] Lee PC and Meisel D, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols”, The Journal of Physical Chemistry, vol. 86, pp. 3391-3395, 1982.
    [31] Chang CW, Liao JD, Chang HC, Lin LK, Lin YY and Weng CC, “Fabrication of nano-indented cavities on Au for the detection of chemically-adsorbed DTNB molecular probes through SERS effect”, Analytical Chemistry, vol. 76, pp. 5198-5202, 2011.
    [32] Kneipp K, Kneipp H, Itzkan I, Dasari RR and Feld MS, “Ultrasensitive chemical analysis by Raman spectroscopy”, Chemical Reviews, vol. 99, pp. 2957-2975, 1999.
    [33] Lin CC, Yang YM, Chen YF, Yang TS and Chang HC, “A new protein A assay based on Raman reporter labeled immunogold nanoparticles”, Biosensors and Bioelectronics, vol. 24, pp. 178-183, 2008.
    [34] Grubisha DS, Lipert RJ, Park HY and Driskell J, Porter MD, “Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced Raman scattering and immunogold labels,” Analytical Chemistry, vol. 75, pp. 5936-5943, 2003.
    [35] Guven B, Basaran-Akgul N, Temur E, Tamer U and Boyaci IH, ”SERS-based sandwich immunoassay using antibody coated magnetic nanoparticles for Escherichia coli enumeration”, Analyst, vol. 136, pp. 740-748, 2011.
    [36]hhttp://www.rci.rutgers.edu/~microlab/CLASSINFO/IMAGESCI/Identification%20of%20Unknown%20-%20Api.htm

    下載圖示 校內:2015-08-31公開
    校外:2015-08-31公開
    QR CODE