| 研究生: |
鄧迪隆 Teng, Ti-Lung |
|---|---|
| 論文名稱: |
化學機械平坦化製程中研磨液流場觀測與數值模擬 Experimental Observation and Numerical Simulation of Slurry Flow in Chemical Mechanical Planarization |
| 指導教授: |
楊天祥
Yang, Tian-Shiang 陳國聲 Chen, Kuo-Shen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 影像觀測 、非均勻晶圓背壓 、研磨液流場 、流體壓力量測 、化學機械平坦化 |
| 外文關鍵詞: | slurry spreading, fluid pressure measurement, non-uniform wafer-back pressure, slurry flow, Chemical mechanical planarization |
| 相關次數: | 點閱:96 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在半導體產業中,化學機械平坦化製程(chemical mechanical planarzation, CMP )為一關鍵性的技術。但在業界實際製程中,由於現象複雜,影響的參數眾多,加上成本問題,難以進行反覆的參數測試以求得最佳參數。因此,在本論文中建立觀測機台與理論模型用以進行測試。
本論文第一部份為建立一CMP流場觀測機台進行測試。除了利用高速攝影機CCD影像觀測研磨墊以及晶圓與研磨墊間流場之外,也利用壓力感測器量測晶圓與研磨墊間流體壓力,描繪出晶圓與研磨墊間流體壓力分佈,進而探討研磨墊種類、研磨液注入角度及位置、晶圓背壓、轉速等參數對於CMP流場之影響。結果發現低轉速與低背壓可使得研磨液較易流入晶圓與研磨墊間;同時,隨著轉速與晶圓背壓的增加,會造成平均流體壓力朝著負壓增大的方向變化。
本論文的第二部份為利用二維CMP理論模型,將實驗測試結果與非均勻晶圓背壓作用下之計算結果進行比對。數值結果發現非均勻晶圓背壓會造成接觸應力改變,影響流體壓力分佈,也提供實驗結果可能之解釋及利用此一結果提供後續機台改良之參考依據。
Chemical mechanical planarization (CMP) is now recognized as the enabling technology for producing near-perfectly planar surfaces that are essential to the success of lithographical processes for manufacturing ultralarge-scale integrated semiconductor devices. In practice, since the CMP process involves the complicated interactions of fluid dynamics, contact mechanics, and slurry chemistry, it is usually difficult (and expensive) to determine the optimum process parameters. To help solve this problem, here we study the slurry flow in CMP via experimental observations and numerical simulations.
In the first part of this thesis, we discuss the experimental setup and results of our slurry flow observations. Basically, the spreading of slurry flow is recorded by a high-speed CCD camera, and the fluid (i.e., slurry) pressures at a number of locations are measured by pressure transducers so as to construct the fluid pressure distribution on the wafer surface. Observations are made for several different polishing pads. Also, on each pad, we vary the slurry injection site and injection angle, the wafer-back pressure, and the rotation speeds of the wafer and pad. The results suggest that, in general, it is easier for the slurry to enter the pad–wafer interface at lower rotation speeds of the wafer and pad, and at lower wafer-back pressures. Moreover, for a fixed slurry flowrate, the slurry spreading can be maximized by properly choosing the groove pattern and slurry injection site on the pad. It is also found that the average fluid pressure is subambient, with its magnitude increasing with the wafer-back pressure and the rotation speeds of the wafer and pad.
In the second part of this thesis, we discuss the results of numerical simulations based upon a 2-D CMP model. As it turns out, reasonable agreement between the experimental and numerical results can be obtained only if a non-uniform wafer-back pressure distribution is used in the numerical computations. This suggests that the wafer-back pressure may indeed be non-uniformly distributed in our experiments. A number of directions therefore are identified in which we may improve our slurry flow observation apparatus in the future.
[1] 菊地正典(陳連春譯), ”透視半導體”, 建興出版社,台北, 1&114-117, 2004.
[2] 土肥俊郎(王建榮等譯), “半導體平坦化CMP技術”, 全華圖書, 5, 2000.
[3] 前田和夫(鄭政忠譯), “半導體製造裝置”, 普林斯頓國際有限公司, 台北, 22-39, 2003.
[4] R.K. Singh, R. Bajaj, “Advances in chemical-mechanical planarization”, MRS Bull, 27, 743-747, 2002.
[5] G.P. Muldowney, J.J. Hendron, T.T. Crkvenac, “The impact of slurry backmixing in determining optimal CMP process condition”, Rohm and Haas Electronic Materials CMP Technology, NewYork, DE 19713 USA.
[6] W.J. Patrick, W.L. Guthrie, C.L. Standley, P.M. Schiable, “Application of chemical mechanical polishing to the fabrication of VLSI circuit interconnections ”, J. Electrochem Soc. , 138 , 1778-1784, 1991.
[7] T.-S. Yang, Y.-C. Wang, K.-S. Chen, Y.-J. Chen, J.-L. Yan, “Optimization of Wafer-Back Pressure Profile in Chemical Mechanical Planarization”, J. Electrochem. Soc., 155(10) , H720-H729,2008.
[8] J. Tichy, J.A. Levert, L. Shan, S. Danyluk, “Contact Mechanics and Lubrication Hydrodynamics of Chemical Mechanical Polishing”, J. Electrochem Soc., 146, 1523-1528 , 1999.
[9] F.W. Preston, “The theory and design of plate glass polishing machines” , JSoc Glass Technol., 11, 214-256 ,1927.
[10] J.M. Steigerwald, S.P. Murarka, R.J. Gutmann, ”Chemical Mechanical Planarization of Microelectronic Materials”, Wiley, New York, 1997.
[11] J. Levert, R. Baker, F. Mess, R. Salant, S. Danyluk, “Mechanisms of Chemical-Mechanical Polishing of SiO2 Dielectric on Intergrated Circuits”, Tribol.Trans., 41, NO.4, 593-599, 1998.
[12] T.K. Doy, K. Sechimo, K. Suzuki, A. Philipossian, M. Kinoshita, “Impact of novel pad groove designs on removal rate and uniformity of dielectric and copper CMP”, J Electrochem Soc. , 151, 196-199, 2004.
[13] D. Rosales-Yeomans, T. Doi, M. Kinoshita, T. Suzuki, A. Philipossian, “Efferct of pad groove designs on the frictional and removal rate characteristics of ILD CMP”, J Electrochem Soc. , 152, 62-67, 2005.
[14] R.S. Subramanian, L. Zhang, S.V. Babu, “Transport phenomena in chemical mechanical polishing”, J Electrochem Soc., 146, 4263-4272 , 1999.
[15] G.P. Muldowney, D.P. Tselepidakis, “A computational study of slurry flow in grooved CMP polishing pads”, Proceedings of the 2004 CMP-MIC Conference, 2004.
[16] Y.-C. Wang, T.-S. Yang, “Effects of Pad Grooves on Chemical Mechanical Planarization” , J. Electrochem Soc., 154(6), 486-494, 2007.
[17] Y.-C. Wang, T.-S. Yang, ”Modeling and calculation of slurry-chemistry effects on chemical–mechanical planarization with a grooved pad”, J.Eng.Math., 63, 33-50, 2009.
[18] 劉家良, 楊天祥, 晶圓扣環對於化學機械平坦化製程中接觸應力均勻度的影響,國立成功大學機械工程學系碩士論文, 2008.
[19] 劉家良, 王耀塵, 胡逸群, 楊天祥, 陳國聲, 晶圓扣環對於化學機械平坦化製程中接觸應力均勻度的影響, 第六屆全國精密製造研討會, 2008.
[20] 胡逸群, 王耀塵, 劉家良, 楊天祥, 陳國聲, 扣環及晶圓剛性對化學機械平坦化製程中接觸應力均勻度之影響, 中華民國力學學會第三十二屆全國力學會議, 2008.
[21] D. Bullen, A. Scarfo, A. Koch, D.P.Y. Bramono, J. Coppeta, L. Racz, “In Situ Technique for Dynamic Fluid Film Pressure Measurement during Chemical Mechanical Polishing”, J.Electrochem. Soc., 147, 2741-2743 ,2000.
[22] H. Hocheng, C.Y. Cheng, “Visualized Characterization of Slurry Film Between Wafer and Pad During Chemical Mechanical Planarization”, IEEE Trans.Semicond.Manif., 15 ,45 ,2002.
[23] C. Zhou, L. Shan, J.R. Hight, S.H. Ng, S. Danyluk, “Fluid pressure and its effects on chemical mechanical polishing”, Wear, 253, 430, 2002.
[24] 陳慕全, 化學機械研磨拋光製程之流場觀測系統之設計與實作, 大專生參與國科會計畫研究成果報告書, 2005.
[25] X. Jin, L.M. Keer, Q. Wang, “A 3D simulateion of CMP” , J.Elextrochem Soc., 152 , G7-G15,2005.
[26] B.J. Hamrock, S.R. Schmid, B.O. Jacobson,”Fundamentals of Fluid Film Lubrication”, Marcel Dekker ,Inc, Chapter 7, 2004.
[27] N. Patir, H.S. Cheng, “An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication”, ASME J. Lubr. Technol., 100, 12-17, 1978.
[28] J.C. Tannehill, D.A. Anderson, R.H. Pletcher, “Computational Fluid Mechanics and Heat Transfer”, 2nd ed., Talor & Francis, Philadelphia, PA, Chaper 3, 1997.
[29] 王耀塵, 楊天祥, 陳國聲, 顏嘉良, 多區段晶圓背壓對於化學機械研磨製程中材料移除率空間均勻度的影響, 第十四屆全國計算流體力學學術研討會, 2007.
[30] W. Lortz, Degussa, “Viskositt von CMP Slurries”, CMP user Meeting, 35, 2003