簡易檢索 / 詳目顯示

研究生: 鄭量元
Cheng, Liang-Yuan
論文名稱: 異向性薄膜表面電漿效應應用於偏振掃描式橢偏儀之流體折射係數量測
Anisotropic Thin Film Surface Plasmon Resonance on Polarization Scanning Ellipsometry for Refractive Index Measurement
指導教授: 羅裕龍
Lo, Yu-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 90
中文關鍵詞: 橢偏參數史托克向量表面電漿效應異向性薄膜
外文關鍵詞: Ellipsometer, Stokes vector, surface-plasmon resonance, Anisotropic thin film
相關次數: 點閱:142下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究發展以史托克參數解出橢偏參數,並以此基礎發展的新式偏振掃描式橢偏儀。提出新的參數名為「等效橢偏參數」,不同於傳統式的橢偏參數僅能表示P-S波的關係,它可以表示任意方向的兩個正交波,在經過材料後其相互的振幅及相位關係。利用此技術應用於表面電漿效應的感測器開發,利用線性光以特定共振角或光譜頻段入射於金屬表面之上,產生表面消逝波的特定角度和特定頻段吸收,金屬表面的共振效應對於樣本的折射率變化相當敏感,為生醫光學感測目前的顯學。而我們導入了多層膜的架構,在金屬膜和樣本之間加入一層異向性的薄膜,進行模擬和初步的實驗驗證,得到了理論解析度可達到4 x 10-8 RIU,加上旋轉平台和史托克儀的量測誤差,準確度可達到2 x 10-7 RIU. 而且兼顧了低成本和減少機械振動的誤差產生,與動態量測結合可成為一種新的表面電漿效應感測方式。

    A surface-plasmon resonance(SPR) method based on a metal film deposited on anisotropic thin film is proposed. A polarization scanning ellipsometry is applied to achieve higher sensitivity and precision of measurement. An anisotropic thin film has been deposited in TIRE(Total Internal Reflection Ellipsometry) setup. By six anisotropic effective ellipsometric parameters based upon the amplitude ratio and phase difference of two orthogonal waves in an arbitrary coordinate system with a rotation angle θ relative to the X-Y coordinate frame, the higher sensitivity and precision of measurement can be achieved. In simulation, two different models (4-layer and 5-layer) are set to simulate solid and bio-fluidic samples. In an fixing incident angle at 72.5° of polarization scanning ellipsometry with scanning the input light’s polarization status from 0° to 180°, the resolution on 4 x 10-8 RIU can be achieved by extracting in theoritcal analysis, with refractive index varying. (1.33~1.37). And experimental confirmation in Stoke’s method has done. It has the accuracy is 2 x 10-7 which considered the instrumental error.
    The new method has achieved about 4 times sensitivity more than traditional spectrum-based SPR method. An polarization scanning ellipsometry only scans the linear input polarization status to excite the SPR phenomenon with an incident angle and dual-EO modulator can be applied to achieve the scanning fuction. Thus, the proposed method can reduce the risk of vibration and positioning errors from the mechanical scanning stage used in traditional ellipsometry.

    Abstract .................................................................................................... I 中文摘要 ...................................................................................................III 誌謝 .................................................................................................... V Chapter 1 Introduction ................................................................................. 1 1.1 Preface ........................................................................................... 1 1.2 Review of Surface Plasmon Resonance (SPR) ............................. 3 1.3 Overview of Chapters .................................................................... 6 Chapter 2 Principles of Surface Plasmon Resonance (SPR) ....................... 8 2.1 General Surface Plasmon Resonance ............................................ 8 2.2 Total Internal Reflection Ellipsometry (TIRE) SPR method ......12 Chapter 3 The General Ellipsometry .........................................................18 3.1 General Ellipsometric Parameters ...............................................18 3.2Stokes Method to Extract the Ellipsometric Parameters ..............23 3.3The model ofAnisotropic Thin Film by Berreman 4x4 Method ..27 3.3.1 General Transfer Matrix .....................................................30 3.3.2 Partial Transfer Matrix .......................................................33 3.3.3Incident Matrix ....................................................................36 3.3.4Exit Matrix ...........................................................................37 3.4.5Reflection index for an Anisotropic Thin Film ...................38 3.5GeneticAlgorithm Model ..............................................................39 Chapter 4 The New Polarization Scanning Ellipsometry ..........................42 4.1 Basic Theory of Effective Ellipsometric Parameters ..................42 4.2 The New Polarization Scanning Ellipsometry .........................46 Chapter 5 New Surface Plasmon Resonance Scanning Polarization Ellipsometric Sensing ................................................................49 5.1 Multi-layer SPR Model Simulation .............................................49 5.2 Simulation of Anisotropic 4-layer Model ....................................49 5.3 Simulation of Anisotropic 5-layer Model ....................................55 Chapter 6 Robustness analysis of the Stokes Method ...............................62 6.1 Robustness of Proposed Method toward Errors in Stokes Parameters................................................................................62 6.2 Robustness of Proposed Method toward Errors in non-ideal input polarized lights ...............................................................65 6.3 Error Analysis Toward to Polarizer Controlling Platform.....67 6.4 Definition of RIU (Refractive Index Unit) Accuracy in Polarization Scanning Ellipsometry ........................................70 Chapter 7 Experimental Confirmation of 4-layer SPR 4-layer Model ......72 7.1 Experimental Setup and Calibration ............................................72 7.2 Experimental Result of 4-layer Model ........................................75 7.3 Experimental Result of 4-layer Model by Incident Angle Modulation ...................................................................................80 Chapter 8 Conclusion and Futureworks ....................................................82 8.1 Conclusion ...................................................................................82 8.2 Futurework ...................................................................................83 Bibliography ..............................................................................................84

    Adamson, P., “Optical diagnostics of anisotropic nanoscale films on transparent isotropic materials by integrating reflectivivty and ellipsometry,” Appl. Opt., Vol. 48, pp.5906-5916, (2009).

    Arwin, H., Poksinski, M., and Johansen, K., “Total internal reflection ellipsometry: principles and applications,” Applied Optics, Vol. 43, Issue 15, pp. 3028-3036 (2004)

    Aspenes, D. E. and Studna, A. A., “High precision scanning ellipsometer,” Appl. Opt., Vol. 14, pp. 220-228, (1975).

    Azzam, R.M.A. and Bashara, N.M., Ellipsometry and polarized light, North Holland, Amsterdam (1977).

    Azzam, R.M.A., “Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal,” Opt. Lett. Vol. 2, pp. 148-150, (1978).

    Azzam, R.M.A., “A simple Fourier photopolarimeter with rotating polarizer and analyzer for measuring Jones and Mueller matrices,” Optics Communications , Vol. 25, pp. 137-140, (1978).

    Azzam, R.M.A., Giardina, K.A., and Lopez, A.G., “Conventional and generalized ellipsometry using the four-detector photopolarimeter,” Opt. Eng. Vol. 30, pp. 1583-1589, (1991).

    Beardsley, G. F., “Mueller scattering matrix of sea water,” J. Opt. Soc. Am. Vol. 58, pp. 52-57, (1968).

    Berreman, D. W., “Optics in stratified and anisotropic media 4 × 4-matrixformulation,” J. Opt. Soc. Am., Vol. 62, p. 502, (1972).

    Chen, P. C., Lo, Y. L., Yu, T. C., Lin, J. F. and Yang, T. T., “Mueller-matrix-based polarimeter for the determination of the properties of optically anisotropic materials,” Optics Express, Vol. 17, pp.15860-15884, (2009).

    Chipman, R.A., “Polarization analysis of optical systems,” Optical Engineering, Vol. 28, pp. 90-99, (1989).

    Compain, E., Drevillon, B., Huc, J., Parey, J. Y. and Bouree, J. E., “Complete Mueller matrix measurement with a single high frequency modulation,” Thin Solid Films, Vol. 47, pp. 313–314, (1998).

    Collins, R. W. and Koh, J., “Dual rotating-compensator multichannel ellipsometer: instrument design for real-time Mueller matrix spectroscopy of surfaces and films,” J. Opt. Soc. Am. A, Vol. 16, pp. 1997–2006, (1999).

    Drevillon, B., Perrin, J., Marbot, R., Violet, A. and Dalby, J. L., “Fast polarization modulated ellipsometer using a microprocessor system for digital Fourier analysis,” Review of Scientific Instruments, vol. 53, pp. 969-977, (1982).

    Drude, P., Ann. Phys., Vol. 32, p.584, (1987).

    Fujiwara, H., Spectroscopic ellipsometry – principles and applications, John Wiley & Sons Ltd, The Atrium, (2007).

    Hauge, P. S. and Dill, F. H., “A rotating-compensator Fourier ellipsometer,” Opt. Commun., Vol.14, pp. 431-43, (1975).

    Hauge, P. S., Muller, R.H. and Smith, C.G., “Conventions and formulas for using the Mueller-Stokes calculus in ellipsometry,” Surf. Sci., Vol. 96, pp. 81–107, (1980). Hecht,

    E., Handbook of optics, Addison Wesley, (2002).

    Homola, J.,“Present and future of surface plasmon resonance biosensors”Anal BioanalChem 377 : 528–539 (2003)

    Hoopera, I. R., Roothb, M., Samblesa, J. R., “Dual-channel differential surface plasmon ellipsometry for bio-chemical sensing,” Biosensors and Bioelectronics 25, 411–417, (2009)

    Iwata, T., and Maeda, S., “Simulation of an absorption-based surface-plasmon resonance sensor by means of ellipsometry” Appl. Opt., Vol. 46, No. 9, pp. 1575–1582, (2007)

    Jasperson, S. N. and Schnatterly, S. E., “An improved method for high reflectivity ellipsometry based on a new polarization modulation technique,” Rev. Sci. Instrum., Vol. 40, pp. 761-767, (1969).

    Jellison, G. E. Jr. and Modine, F. A., “Two-modulator generalized ellipsometry: theory,” Appl. Opt., Vol. 36, pp. 8190–8198, (1997).

    Jellison, G. E. Jr., “Spectroscopic ellipsometry data analysis: measured versus calculated quantities,” Thin Solid Films, Vol. 313–314, pp.33–39, (1998).

    Laskarakis, A., Logothetidis, S., Pavlopoulou, E. and Gioti, M., "Mueller matrix spectroscopic ellipsometry: formulation and application,” Thin Solid Films, Vol. 455-456, pp. 43-49, (2003).

    Lee, J.Y., “Development of Optical Differential Technique for Surface Plasmon Resonance Sensing,” National Science Council of Taiwan(2010).

    Lee, J.Y., “Development of Optical Differential Technique for Surface Plasmon Resonance Sensing,”National Science Council of Taiwan(2010).

    Lee, J., Rovira, P. I., An, I., and Collins, R. W., “Rotating-compensator multichannel ellipsometry: applications for real time Stokes vector spectroscopy of thin film growth,” Rev. Sci. Instrum., Vol. 69, pp. 1800–1810, (1998).

    Motohiro, T. and Taga, Y., “Thin film retardation plate by oblique deposition,” Applied Optics / Vol. 28, No. 13 / pp. 2642-2682, (1989).

    Naraoka, R., Okawa, H., Hashimoto, K., Kajikawa, K., “Surface plasmon resonance enhanced second-harmonic generation in Kretschmann configuration”Optics Communications pp. 248-256 (2005) .

    Nabok, A , Tsargorodskaya, A.,“The method of total internal reflection ellipsometry for thin film characterisation and sensing,”Thin Solid Films 516, pp. 8993–9001 (2008)

    Naciri, A. En, Johann, L., Kleim, R., Sieskind, M. and Amann, M., ”Spectroscopic ellipsometry of anisotropic materials: application to the optical constants of HgI2,” Appl. Opt., Vol. 38, pp. 647, (1999).

    Nelson, S.G., Johnston, K.S., Yee, S.S., “High sensitivity surface plasmon resonance sensor based on phase detection,” Sensors and Actuators B 35-36, pp. 187-191 (1996) .

    Paik, W. and Bockris, J. O’M, “Exact ellipsometric measurement of thickness and optical properties of a thin light-absorbing film without auxiliary measurements,” Surf. Sci., Vol. 28, pp.61-68, (1971).

    Rothen, A.,“The ellipsometer, an apparatus to measure thicknesses of thin surface films,” Rev. Sci. Instrum., Vol. 16, pp. 26-30, (1945).

    Schubert, M., Rheinländer, B., Woollam, J. A., Johs, B., and Herzinger, C., “Extension of rotating-analyzer ellipsometry to generalized ellipsometry: determination of the dielectric function tensor from uniaxial TiO2,” J. Opt. Soc. Am. A, Vol. 13, pp. 875–883, (1996).

    Schubert, M., Tiwald, T. E., and Woollam, J. A., “Explicit solutions for the optical properties of arbitrary magneto-optic materials in generalized ellipsometry,” Appl. Opt., Vol. 38, pp. 177–187, (1999).

    Tronstad, L., “The investigation of thin surface films on metals by means of reflected polarized light,” Trans. Faraday Soc., Vol. 29, pp. 502-514, (1933).

    Wohler, H., Fritsch, M., Haas, G. and Mlynski, D. A., “Faster 4 × 4 matrix method for uniaxial inhomogeneous media,” J. Opt. Soc. Am. A, Vol. 5, p. 1554, (1988).

    Zhou, Y., He, Z., and Sato, S., “An improved Stokes parameter method.” (2010)

    劉冠彣, “Differential surface plasmon resonance sensing technique,”, National Central University of Taiwan, (2008)

    下載圖示 校內:2018-07-30公開
    校外:2018-07-30公開
    QR CODE