簡易檢索 / 詳目顯示

研究生: 阮文彥
Juan, Wen-Yen
論文名稱: 公告應回收廢棄物回收處理產業火災風險分析-以高雄市廢塑膠容器回收處理業為例
Research on Fire Risk Analysis for the Recycling and Processing Industry: A Case Study of Waste Plastic Container Recycling and Processing Plants in Kaohsiung City
指導教授: 陳偉聖
Chen, Wei-Sheng
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2025
畢業學年度: 114
語文別: 英文
論文頁數: 302
中文關鍵詞: 廢塑膠容器回收處理業火災風險廣義線性模型蒙地卡羅模擬系統動力學尾端風險
外文關鍵詞: Waste Plastic Container Recycling Industry, Fire Risk, Generalized Linear Model, Monte Carlo Simulation, System Dynamics, Tail Risk
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以高雄市 2017 年至 2024 年間廢塑膠容器回收處理設施之火災資料為基礎,旨在建立一套可量化、可模擬且具政策應用性的火災風險分析架構 。目前現行資源回收處理設施的火災研究多停留於靜態統計層面,缺乏對制度、行為與時序交互影響的探討;因此,本論文創新性地整合「廣義線性模型(Generalized Linear Model, GLM)」、「蒙地卡羅模擬(Monte Carlo Simulation, MCS)」與「系統思考與系統動力學(System Dynamics, SD)」三種方法,建立一套跨層次、跨時間尺度的多方法整合分析架構。
    首先,GLM分析燃燒面積與搶救時間兩項核心變數,成功捕捉火災資料的右偏與異質特性。模型結果呈現一「反直覺」情形:「到場時間」呈現顯著的「負相關」,即統計上「較長的到場時間」對應到「較小的燃燒面積與滅火時間」。本研究將此歸因為觀測資料中的「統計假象」,受「郊區效應」影響顯著:由於回收場多位於郊區,消防據點分佈較廣,到場時間本就較長;因此,「較短到場時間」往往對應於通報明確的重大火災」,而「較長到場時間」則多為「案情明確的輕微火災」。此發現突顯了單純靜態模型進行因果推論的局限性。此外,「登記狀態」具負向關係但統計不顯著,暗示制度防護的潛在效果。
    接著,以 MCS 將 GLM 的估計參數轉化為隨機分佈,進行十萬次抽樣以模擬年度損失分佈與尾端風險。模擬結果確認塑膠回收場火災呈「高頻小損、低頻巨損」的長尾特性,且夜間情境為最顯著的高風險來源。敏感度分析顯示,整體風險具高度不確定性;結果指出改單純增加人力或縮短到場時間的邊際效益則趨於飽和。最後,SD 模型將因果迴路圖轉化為可量化的動態系統,模擬政策介入對長期風險的影響。模擬結果指出,制度性政策對長期穩定性貢獻最大,透過平衡性回饋迴路逐步降低風險基線;操作性政策則能在短期內提升效率,但其效益最終會被系統回饋機制所吸收。綜合二類政策方案可同時強化結構性防護與操作韌性,形成雙重穩定化迴路,展現動態平衡之系統行為。
    本研究成功將統計推論(GLM)、不確定性量化(MCS)與動態回饋模擬(SD)串聯。研究結果揭示:火災損害受制度性防護與操作性應變的交互作用支配,長尾風險需以系統性與預防性策略應對。此研究不僅補足國內在廢棄物回收火災風險量化與政策模擬上的缺口,亦為地方政府與消防單位建立以數據為本的防災治理決策模型,具理論創新與實務應用價值。

    This study uses fire incident data from waste plastic container recycling facilities in Kaohsiung City from 2017 to 2024 to develop a quantifiable, simulable, and policy-relevant fire risk analysis framework. The research shows that current studies on waste and recycling facility fires mostly remain at a static statistical level, lacking examination of how institutions, behaviors, and time series interact. Therefore, this dissertation innovatively combines three methods: the Generalized Linear Model (GLM), Monte Carlo Simulation (MCS), and System Dynamics (SD), creating a multi-level, cross-temporal integrated analytical framework.
    First, the GLM uses a Gamma-log structure to analyze two core variables: burned area and suppression time, effectively capturing the right-skewed and heterogeneous nature of the fire data. The model results reveal a key "counter-intuitive" finding: "arrival time" shows a significant "negative correlation," meaning that, statistically, "longer arrival times" are associated with "smaller burned areas and shorter suppression times." This study attributes this to a "statistical artifact" in observational data, heavily influenced by the "suburban effect": since most recycling sites are located in suburban areas where fire stations are widely spread out, standard arrival times tend to be longer. Consequently, "extremely short arrival times" often correspond to "major fires with high-priority dispatch," while "longer arrival times" are more likely "minor fires with lower priority or delayed reporting." This highlights the limitations of relying solely on static models for causal inference. Additionally, "registration status" shows a negative relationship but is not statistically significant, implying a potential protective effect of institutional safeguards.
    Next, MCS converts the GLM-estimated parameters into random distributions, running 100,000 iterations to simulate annual loss distributions and tail risks (VaR, CVaR). The simulation results confirm the long-tail characteristic of "high frequency, small loss; low frequency, catastrophic loss" in fires at plastic recycling facilities, with the nighttime scenario being the most significant source of high risk. Sensitivity analysis reveals overall high uncertainty; results suggest that the marginal benefits of merely increasing manpower or shortening arrival times tend to diminish. Finally, the SD model translates the Causal Loop Diagram (CLD) into a quantifiable dynamic system to simulate how policy interventions impact long-term risk. Results indicate that institutional policies contribute most to long-term stability, gradually lowering the risk baseline through balancing feedback loops; operational policies can improve efficiency in the short term, but system feedback mechanisms ultimately absorb their benefits. Combining both policy types can simultaneously enhance structural protection and operational resilience, creating a dual stabilization loop and demonstrating a system behavior of dynamic equilibrium.
    This study uses an integrated multi-method framework, linking statistical inference (GLM), uncertainty quantification (MCS), and dynamic feedback modeling (SD) to reconstruct the multi-level structure of fire risk in the plastic recycling industry in Kaohsiung. The results show that fire damage is influenced by the interaction between institutional protection and operational response, and long-tail risks need to be managed with systemic and preventive strategies. This research not only addresses a gap in domestic quantification and policy simulation of waste-recycling fire risks but also develops a data-driven disaster-governance decision-making model for local governments and fire departments, with theoretical innovation and practical application value.

    CHAPTER 1 INTRODUCTION 1 1-1 BACKGROUND 1 1-2 RESEARCH MOTIVATION 4 1-3 RESEARCH OBJECTIVES 7 1-4 SCOPE AND LIMITATIONS 8 CHAPTER 2 LITERATURE REVIEW 12 2-1 INTERCONNECTIONS BETWEEN RECYCLING AND FIRE RISK 12 2-1-1 Taiwan’s Waste Recycling System 12 2-1-2 Characteristics and recycling process of waste plastic containers 14 2-1-3 Fire Risks in Recycling and Processing Facilities 16 2-1-4 Research on Fires in Waste Recycling and Processing Facilities 19 2-2 FIRE CONTROL POLICIES IN THE RECYCLING INDUSTRY: DOMESTIC AND INTERNATIONAL PERSPECTIVES 29 2-2-1 Domestic Control Policies 29 2-2-2 Summary of International Regulations and Technical Guidelines 34 2-2-3 Comparative Synthesis of Domestic and International Policy Frameworks 39 2-3 FIRE RISK ASSESSMENT 42 2-3-1 Fire Risk Assessment Methods 42 2-3-2 Applications of Generalized Linear Models (GLMs) in Fire Risk Analysis 48 2-3-3 Applications of Monte Carlo Simulation (MCS) in Managing Fire Risk Uncertainty 54 2-4 SYSTEM THINKING AND DISASTER MANAGEMENT 62 2-4-1 Theoretical Foundations and Core Concepts of System Dynamics 62 2-4-2 Applications of System Dynamics and System Thinking in Fire Risk and Disaster Management 64 2-5 SUMMARY 68 CHAPTER 3 METHODOLOGY 70 3-1 RESEARCH PROCESS 70 3-1-1 Data collection and pre-processing 70 3-1-2 Variable Definition and Preliminary Analysis 73 3-1-3 Generalized Linear Model 77 3-1-4 Monte Carlo Simulation Design 79 3-1-5 System Dynamics Modeling and Scenario Simulation 82 3-1-6 Integration of Results and Methodological Framework 85 3-2 SAMPLE SELECTION AND DATA DESCRIPTION 89 3-2-1 Background and Scope of the Study 89 3-2-2 Data Scope and Time Horizon 92 3-2-3 Data Collection, Filtering, and Transformation 94 3-2-4 Limitations and Data Suitability 97 3-3 FIRE INCIDENT DATABASE AND KEY VARIABLES 98 3-3-1 Fire Incident Data Sources and Descriptive Statistics 98 3-3-2 Dependent Variable Definition 100 3-4 GENERALIZED LINEAR MODEL (GLM) 102 3-4-1 Theoretical Foundation and Research Applicability 102 3-4-2 Model Design and Mathematical Structure 104 3-4-3 Model Estimation and Goodness-of-Fit Assessment 110 3-4-4 Principles for Variable Selection and Model Design 114 3-4-5 Model Estimation Workflow and Software Environment 116 3-5 DESIGN OF THE MONTE CARLO SIMULATION 120 3-5-1 Simulation Purpose 120 3-5-2 Simulation Framework and Procedure 122 3-5-3 Sampling Method and Simulation Settings 124 3-5-4 Stopping Criteria and Quality Control 127 3-5-5 Loss Proxy Construction 130 3-5-6 Simulation Outputs and Policy Application 133 3-6 SYSTEM THINKING MODEL DEVELOPMENT 139 3-6-1 Framework and Theoretical Basis 139 3-6-2 Causal Loop Diagram Construction 141 3-6-3 System Dynamics Model Transformation 147 3-6-4 Policy Scenario Design 152 3-6-5 Model Validation and Limitations 156 3-7 INTEGRATION OF METHODS AND POLICY SIMULATION FRAMEWORK 160 CHAPTER 4 RESULTS AND DISCUSSION 165 4-1 DESCRIPTIVE STATISTICAL ANALYSIS OF FIRE DATA 165 4-2 GENERALIZED LINEAR MODELS RESULTS AND ANALYSIS 184 4-2-1 Model Fitness Assessment for Dependent Variables 185 4-2-2 Estimation Results of Explanatory Variables 201 4-2-3 Model Comparison and Interpretation 209 4-3 MONTE CARLO SIMULATION RESULTS AND ANALYSIS 213 4-3-1 Annual Fire Loss Distribution and Confidence Interval 213 4-3-2 Risk Sensitivity Analysis 218 4-3-3 Spatial Visualization and Hotspot Analysis of Fire Risk 228 4-3-4 Short-term Forecast and Scenario Analysis of Burned Area 231 4-3-5 Integrative Discussion 239 4-4 SYSTEM DYNAMICS SIMULATION RESULTS AND ANALYSIS 242 4-4-1 Simulation Overview 242 4-4-2 Overview of Simulation Results 245 4-4-3 Feedback Structure and Behavioral Interpretation 253 4-5 INTEGRATED DISCUSSION AND COMPARATIVE ANALYSIS 256 CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 261 5-1 RESEARCH OVERVIEW 261 5-2 MAJOR FINDING 263 5-3 THEORETICAL AND PRACTICAL CONTRIBUTIONS 267 5-4 POLICY RECOMMENDATIONS 269 5-5 LIMITATIONS AND FUTURE DIRECTIONS 272 REFERENCES 277 APPENDIX A 284 APPENDIX B 286

    Adetona, O., Ozoh, O. B., Oluseyi, T., Uzoegwu, Q., Odei, J., & Lucas, M. (2020). An exploratory evaluation of the potential pulmonary, neurological and other health effects of chronic exposure to emissions from municipal solid waste fires at a large dumpsite in Olusosun, Lagos, Nigeria. Environmental Science and Pollution Research, 27(24), 30885-30892.
    AEP. (2025). California Environmental Quality Act (CEQA) Statute and Guidelines Association of Environmental Professionals.
    Akaike, H. (2003). A new look at the statistical model identification. IEEE transactions on automatic control, 19(6), 716-723.
    Au, S. K., Wang, Z.-H., & Lo, S.-M. (2007). Compartment fire risk analysis by advanced Monte Carlo simulation. Engineering Structures, 29(9), 2381-2390.
    Averill, J. D., Moore-Merrell, L., Barowy, A., Santos, R., Peacock, R., Notarianni, K. A., & Wissoker, D. (2010). Report on residential fireground field experiments. NIST Technical Note, 1661(1), 104.
    Barlas, Y. (1996). Formal aspects of model validity and validation in system dynamics. System Dynamics Review: The Journal of the System Dynamics Society, 12(3), 183-210.
    Barsalou, O., & Picard, M. H. (2018). International environmental law in an era of globalized waste. Chinese journal of international law, 17(3), 887-906.
    Beck, U. (1992). Risk society: Towards a new modernity. Sage google schola, 2, 53-74.
    Beck, V., & Yung, D. (1994). The development of a risk-cost assessment model for the evaluation of fire safety in buildings. Fire Saf Sci, 4, 817-828.
    Blyth, C. R. (1972). On Simpson's paradox and the sure-thing principle. Journal of the American Statistical Association, 67(338), 364-366.
    Bruns, M. C. (2018). Estimating the flashover probability of residential fires using Monte Carlo simulations of the MQH correlation. Fire Technology, 54(1), 187-210.
    California, S. o. (2025). CalRecycle. Retrieved 07/15 from https://calrecycle.ca.gov/SWFacilities/Permitting/
    Cameron, A. C., & Trivedi, P. K. (2013). Regression analysis of count data. Cambridge university press.
    Carmel, Y., Paz, S., Jahashan, F., & Shoshany, M. (2009). Assessing fire risk using Monte Carlo simulations of fire spread. Forest Ecology and Management, 257(1), 370-377.
    Charters, D., & Smith, F. (1992). The effects of materials on fire hazards and fire risk assessment. INSTITUTION OF MECHANICAL ENGINEERS CONFERENCE PUBLICATIONS,
    Choi, M.-Y., & Jun, S. (2020). Fire risk assessment models using statistical machine learning and optimized risk indexing. Applied Sciences, 10(12), 4199.
    Christensen, T. (2011). Solid waste technology and management. John Wiley & Sons.
    Code, L. S. (2012). NFPA 101 life safety code. In NFPA 101 Life Safety Code.
    Cutter, S. L., Boruff, B. J., & Shirley, W. L. (2012). Social vulnerability to environmental hazards. In Hazards vulnerability and environmental justice (pp. 115-132). Routledge.
    Dear, M. (1992). Understanding and overcoming the NIMBY syndrome. Journal of the American planning association, 58(3), 288-300.
    Devine, C., Flores, N., & Walls, R. (2023). Literature review and hazard identification relating to fire safety in commercial plastic recycling facilities. Journal of fire sciences, 41(6), 269-287.
    Di Nardo, M., Gallo, M., Murino, T., & Santillo, L. C. (2017). System dynamics simulation for fire and explosion risk analysis in home environment. International Review on Modelling and Simulations, 10(1), 43-54.
    Dobson, A. J., & Barnett, A. G. (2018). An introduction to generalized linear models. Chapman and Hall/CRC.
    Draper, N. R., & Smith, H. (1998). Applied regression analysis (Vol. 326). John Wiley & Sons.
    Dunn, P. K., & Smyth, G. K. (2018). Generalized linear models with examples in R (Vol. 53). Springer.
    Environment Agency, U. (2021). Fire prevention plans: environmental permits. Retrieved from https://www.gov.uk/government/publications/fire-prevention-plans-environmental-permits
    Finney, M., Grenfell, I. C., & McHugh, C. W. (2009). Modeling containment of large wildfires using generalized linear mixed-model analysis. Forest Science. 55 (3): 249-255., 249-255.
    Fiorucci, P., Gaetani, F., & Minciardi, R. (2008). Development and application of a system for dynamic wildfire risk assessment in Italy. Environmental Modelling & Software, 23(6), 690-702.
    Forrester, J. W. (1997). Industrial dynamics. Journal of the Operational Research Society, 48(10), 1037-1041.
    Garbolino, E., Chery, J. P., & Guarnieri, F. (2016). A simplified approach to risk assessment based on system dynamics: an industrial case study. Risk Analysis, 36(1), 16-29.
    Goh, Y. M., Brown, H., & Spickett, J. (2010). Applying systems thinking concepts in the analysis of major incidents and safety culture. Safety science, 48(3), 302-309.
    Goh, Y. M., Love, P. E., & Lo, D. (2010). System Dynamics Analysis of Organizational Accidents: A Review of Current Approaches. The 28th International Conference of The System Dynamics Society,
    Gretener, M. (1968). Attempt to calculate the fire risk of industrial and other objects. 3rd International Fire Protection Symposium, Eindhoven,
    Hasofer, A. M., & Thomas, I. (2006). Analysis of fatalities and injuries in building fire statistics. Fire Safety Journal, 41(1), 2-14.
    Hilbe, J. M. (2011). Modeling count data. In International encyclopedia of statistical science (pp. 836-839). Springer.
    Hostikka, S., & Keski-Rahkonen, O. (2003). Probabilistic simulation of fire scenarios. Nuclear engineering and design, 224(3), 301-311.
    Hostikka, S., Korhonen, T., & Keski-Rahkonen, O. (2005). Two-model monte carlo simulation of fire scenarios. Fire Safety Science, 8, 1241-1252.
    Huang, X. (2018). Discussion on our country's waste management and resource recycling system. In.
    Ibrahim, M. A. (2020). Risk of spontaneous and anthropogenic fires in waste management chain and hazards of secondary fires. Resources, Conservation and Recycling, 159, 104852.
    Ibrahim, M. A., Lönnermark, A., & Hogland, W. (2022). Safety at waste and recycling industry: Detection and mitigation of waste fire accidents. Waste management, 141, 271-281.
    Jakhar, R., Samek, L., & Styszko, K. (2023). A comprehensive study of the impact of waste fires on the environment and health. Sustainability, 15(19), 14241.
    Janizadeh, S., Bateni, S. M., Jun, C., Im, J., Pai, H.-T., Band, S. S., & Mosavi, A. (2023). Combination four different ensemble algorithms with the generalized linear model (GLM) for predicting forest fire susceptibility. Geomatics, Natural Hazards and Risk, 14(1), 2206512.
    Juan, W.-Y., Wu, C.-L., Liu, F.-W., & Chen, W.-S. (2023). Fires in waste treatment facilities: Challenges and solutions from a fire investigation perspective. Sustainability, 15(12), 9756.
    Kaza, S., Yao, L., Bhada-Tata, P., & Van Woerden, F. (2018). What a waste 2.0: a global snapshot of solid waste management to 2050. In: World Bank Publications.
    Kelling, G. L., & Coles, C. M. (1997). Fixing broken windows: Restoring order and reducing crime in our communities. Simon and Schuster.
    Kwak, H., Lee, W.-K., Saborowski, J., Lee, S.-Y., Won, M.-S., Koo, K.-S., Lee, M.-B., & Kim, S.-N. (2012). Estimating the spatial pattern of human-caused forest fires using a generalized linear mixed model with spatial autocorrelation in South Korea. International Journal of Geographical Information Science, 26(9), 1589-1602.
    Lautenberger, C. (2017). Mapping areas at elevated risk of large-scale structure loss using Monte Carlo simulation and wildland fire modeling. Fire Safety Journal, 91, 768-775.
    Lin, C. L., & Chien, C. F. (2019). Systems thinking in a gas explosion accident–lessons learned from Taiwan. Journal of Loss Prevention in the Process Industries, 62, 103987.
    Lin, C. L., & Chien, C. F. (2021). Lessons learned from critical accidental fires in tunnels. Tunnelling and Underground Space Technology, 113, 103944.
    Maalouf, A., Mavropoulos, A., & El-Fadel, M. (2020). Global municipal solid waste infrastructure: Delivery and forecast of uncontrolled disposal. Waste Management & Research, 38(9), 1028-1036.
    Mannan, S. (2013). Lees' Process Safety Essentials: Hazard Identification, Assessment and Control. Butterworth-Heinemann.
    Mazzucco, W., Costantino, C., Restivo, V., Alba, D., Marotta, C., Tavormina, E., Cernigliaro, A., Macaluso, M., Cusimano, R., & Grammauta, R. (2020). The management of health hazards related to municipal solid waste on fire in Europe: an environmental justice issue? International Journal of Environmental Research and Public Health, 17(18), 6617.
    McFadden, D. (1972). Conditional logit analysis of qualitative choice behavior.
    Meadows, D. (2008). Thinking in systems: International bestseller. chelsea green publishing.
    Mikalsen, R. F., Lönnermark, A., Glansberg, K., McNamee, M., & Storesund, K. (2021). Fires in waste facilities: Challenges and solutions from a Scandinavian perspective. Fire Safety Journal, 120, 103023.
    Ministry of the Environment, J. (2006). Guidelines for the Development of Accident Prevention Manuals for Waste Treatment Facilities.
    Ministry of Environment, T. (2025a). Carbon Footprint Information Platform. Retrieved 0801 from https://cfp-calculate.tw/cfpc/WebPage/index.aspx
    Ministry of Environment, T. (2025b). Environmental Statistics Query web. Retrieved 08/01 from https://statis.moenv.gov.tw/epanet/
    Standard for Installation of Fire Safety Devices based on Use and Occupancy, (2024).
    Moshashaei, P., & Alizadeh, S. S. (2017). Fire risk assessment: A systematic review of the methodology and functional areas. Iranian journal of health, safety and environment, 4(1), 654-669.
    National Development Council, T. (2019). Taiwan Sustainable Development Goals. N. D. Council.
    Nelder, J. A., & Wedderburn, R. W. (1972). Generalized linear models. Journal of the Royal Statistical Society Series A: Statistics in Society, 135(3), 370-384.
    Neuberg, L. G. (2003). Causality: models, reasoning, and inference, by judea pearl, cambridge university press, 2000. Econometric Theory, 19(4), 675-685.
    Perrow, C. (2011). Normal accidents: Living with high risk technologies-Updated edition.
    Pillay, M. (2012). Safety Management of Small-Sized Chemical Waste Treatement Facilities in Victoria, Australia. Management, 2(5), 221-231.
    Plastics Europe. (2023). Plastics – the fast Facts 2023.
    Ramachandran, G. (1982). A review of mathematical models for assessing fire risk.
    Ramachandran, G. (2002). The economics of fire protection. Routledge.
    Ramachandran, G., & Chandler, S. E. (1984). Economic value of early detection of fires in industry and commercial premises.
    Ramachandran, G., & Charters, D. (2011). Quantitative risk assessment in fire safety. Routledge.
    Rasbash, D., Ramachandran, G., Kandola, B., Watts, J., & Law, M. (2004). Evaluation of fire safety. John Wiley & Sons.
    Reason, J. (1990). Human error. Cambridge university press.
    Resources and Waste Management Agency, M. o. E. (2024). Web of Resource Recycling Retrieved 5/18 from https://recycle.moenv.gov.tw/Project/Container
    Robert, C. P., Casella, G., & Casella, G. (1999). Monte Carlo statistical methods (Vol. 2). Springer.
    Rockafellar, R. T., & Uryasev, S. (2000). Optimization of conditional value-at-risk. Journal of risk, 2, 21-42.
    Salem, A. M. (2016). Use of Monte Carlo Simulation to assess uncertainties in fire consequence calculation. Ocean Engineering, 117, 411-430.
    Schwaninger, M., & Grösser, S. (2008). System dynamics as model‐based theory building. Systems Research and Behavioral Science: The Official Journal of the International Federation for Systems Research, 25(4), 447-465.
    Senge, P. M. (1997). The fifth discipline. Measuring business excellence, 1(3), 46-51.
    Senge, P. M., & Forrester, J. W. (1980). Tests for building confidence in system dynamics models. System dynamics, TIMS studies in management sciences, 14(14), 209-228.
    Shields, J., & Silcock, G. (1986). An application of the hierarchical to fire safety. Fire Safety Journal, 11(3), 235-242.
    Stenis, J., & Hogland, W. (2011). Fire in waste-fuel stores: risk management and estimation of real cost. Journal of material cycles and waste management, 13(3), 247-258.
    Sterman, J. (2002). System Dynamics: systems thinking and modeling for a complex world.
    Sterman, J. D. (2000). Business Dynamics: Systems thinking and modeling for a complex world. MacGraw-Hill Company.
    Thompson, K. (2013). Landmark Residential Fire Study Shows How Crew Sizes and Arrival Times Influence Saving Lives and Property.
    Tukey, J. W. (1962). The future of data analysis. In Breakthroughs in Statistics: Methodology and Distribution (pp. 408-452). Springer.
    United Nations. (2015). TRANSFORMING OUR WORLD: THE 2030 AGENDA FOR SUSTAINABLE DEVELOPMENT. U. Nations.
    Vianello, C., Mocellin, P., Maschio, G., Bottacin, G., & Dattilo, F. (2020). Waste disposal facilities fires: Prevention and management. The Veneto region experience. Proceedings of the 30th European Safety and Reliability Conference and the 15th Probabilistic Safety Assessment and Management Conference,
    Wagner, J., & Bilitewski, B. (2009). The temporary storage of municipal solid waste–Recommendations for a safe operation of interim storage facilities. Waste management, 29(5), 1693-1701.
    Walker, G. (2012). Environmental justice: Concepts, evidence and politics. Routledge.
    Waste Industry Safety and Health Forum. (2020). REDUCING FIRE RISK AT WASTE MANAGEMENT SITES
    Wikipedia. (2024). Resin identification code. Retrieved 08/05 from https://en.wikipedia.org/wiki/Resin_identification_code
    Williams, P. T. (2005). Waste treatment and disposal. John Wiley & Sons.
    Wiwanitkit, V. (2016). Thai waste landfill site fire crisis, particular matter 10, and risk of lung cancer. Journal of cancer research and therapeutics, 12(2), 1088-1089.
    Wolsink, M. (2006). Invalid theory impedes our understanding: a critique on the persistence of the language of NIMBY. Transactions of the Institute of British Geographers, 31(1), 85-91.
    Wooldridge, J. M. (2010). Econometric analysis of cross section and panel data. MIT press.
    Zhang, X., Li, X., Mehaffey, J., & Hadjisophocleous, G. (2017). A probability-based Monte Carlo life-risk analysis model for fire emergencies. Fire Safety Journal, 89, 51-62.
    Zorpas, A. A. (2016). Sustainable waste management through end-of-waste criteria development. Environmental Science and Pollution Research, 23(8), 7376-7389.

    QR CODE