簡易檢索 / 詳目顯示

研究生: 陳冠儒
Chen, Kuan-Ju
論文名稱: 基於框架式與本體論知識表達法之財報分析決策支援系統
An Intelligent Decision Support System in Financial Statement Analysis Based on Frame and Ontology Knowledge Representation
指導教授: 李昇暾
Li, Sheng-Tun
學位類別: 碩士
Master
系所名稱: 管理學院 - 資訊管理研究所
Institute of Information Management
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 66
中文關鍵詞: 本體論知識表達法框架式知識表達法階梯方法智慧型決策支援系統財務報表分析
外文關鍵詞: intelligent decision support system, financial statement analysis, frame-based knowledge representation, laddering, ontology-based knowledge representation
相關次數: 點閱:103下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 濫觴於八零年代中期的財報分析決策支援系統,主要以專家系統為代表,其具有提升專家決策一致性與財務報表分析效率,該類系統的知識表達、決策解釋與運作機制多以法則式推理為主,然此一運作模式存在著過於僵化、缺乏彈性與自我學習能力以及所產生的結果難以涵蓋所有情況等缺失,因此亟需導入智慧型決策支援方案以提升決策的效能。為此,本論文針對知識擷取與知識表達兩項核心議題加以改良。有別於過去的相關研究,為了精確擷取出專業且內隱程度較高的領域知識以及考量財報分析知識本身,在知識擷取工作部份,我們整合了階梯方法、大聲思考法以及口語草稿分析法等技術;而在知識表達部份,為了顯示知識類別間的關聯性以及更明確地描述領域知識本身,本研究採用框架式以及本體論知識表達法的思維與特性來取代傳統法則式的知識表達法。為了增加系統運作彈性,知識框架法則部份採模糊邏輯表達式,以有效處理決策環境中之不確定性。再者,本研究同時考量知識庫完整性,以資訊擷取技術將財務報表中,對與專有名詞以及專業術語相似的字詞加以搜尋、比對並置入於知識庫中作為知識庫擴充之機制。本研究蒐集並分析民國93年度我國上市公司之實際資料並從台灣經濟新報資料庫取得實際個案之財務比率進行財務體質評估,其結果再與專家實際評估加以比較,以了解系統評估與專家評估是否一致,並由領域專家針對驗證結果進行評論,進而提升本論文所提出之智慧型決策支援系統的效能。再與框架式財報分析專家系統法則以及知識庫結構部份加以比較,進而取得本研究導入模糊邏輯以及本體論所帶來效益。

    In view of the domain in financial and accounting expert system stands for financial statement analysis intelligent decision support system in 1980-mid. Knowledge representation, decision explanation and inference mechanism are used to rule-based approach have the disadvantages of lacking flexibility, self-learning and domain knowledge presenting. Our research ameliorates some issues as follows: 1. In knowledge elicitation, we combine laddering, thinking aloud and verbal protocol analysis to elicit tacit and professional knowledge. 2. To expend frame-based knowledge representation with ontology, we establish relations among knowledge classes and represent constitutive knowledge accurately. 3. To improve system flexibility and self-learning, we introduce fuzzy logic and information retrieval technique that process uncertainty decision and retrieve similar terms in this domain availably. For discussing our research performance, we collect and analyze the financial health data of listed from companies listed in Taiwan Economic Journal Data Bank in 2004 in order to verify consistence between results of system inferences and domain experts’ cognition, furthermore improve intelligent support performance, followed by comparing our research with frame-based financial statement analysis expert system in the quantity of rules and knowledge base framework to ensure enhance system efficiency. In the final step, to reduce system operation, development and maintenance complexity by verifying advantages of inducing fuzzy logic and ontology in our research.

    目錄 摘要…………………………………………………………I ABSTRACT…………………………………………………II 誌謝………………………………………………………III 目錄………………………………………………………IV 圖目錄……………………………………………………VII 表目錄……………………………………………………IX 壹、緒論……………………………………………………1 一、研究背景與動機………………………………………1 二、研究目的………………………………………………2 三、研究流程………………………………………………3 四、論文架構………………………………………………4 貳、文獻探討………………………………………………5 一、知識擷取………………………………………………5 (一)何謂知識擷取…………………………………………5 (二)知識擷取方法論………………………………………6 (三)階梯方法………………………………………………8 (四)大聲思考法與口語草稿分析法………………………9 (五)正規化概念分析法……………………………………9 (六)知識擷取於財務與會計領域之應用………………10 二、知識表達……………………………………………12 (一)何謂知識表達………………………………………12 (二)法則式知識表達法…………………………………13 (三)框架式知識表達法…………………………………15 (四)本體論知識表達法…………………………………16 (五)財務與會計領域知識表達方法之文獻回顧………17 三、財務報表分析………………………………………18 (一)短期償債能力………………………………………18 (二)長期償債能力………………………………………18 (三)經營能力……………………………………………19 (四)獲利能力……………………………………………19 四、資訊擷取技術………………………………………20 (一)資訊擷取技術簡介…………………………………20 (二)資訊擷取技術於財務會計領域之應用……………22 五、智慧型決策支援系統………………………………23 (一)何謂智慧型決策支援系統…………………………23 (二)財務與會計領域之智慧型決策支援系統文獻回顧24 參、研究方法……………………………………………26 一、財報分析知識擷取…………………………………26 二、財報分析知識表達…………………………………28 三、建立財報分析知識推理機制………………………29 四、知識本體論與推理機制溝通平臺之建構…………30 五、財報分析知識庫擴充………………………………31 肆、智慧型財報分析決策支援系統……………………35 一、領域知識擷取………………………………………35 二、企業財務體質知識框架……………………………40 三、財務報表分析知識本體論…………………………43 (一)正規化概念分析財報分析知識……………………43 (二)領域知識本體論建構………………………………46 四、系統架構與知識運作機制…………………………50 (一)系統架構與介面……………………………………50 (二)領域知識運作機制…………………………………53 伍、驗證評估……………………………………………56 一、績效評估……………………………………………56 二、知識庫評估…………………………………………57 陸、結論…………………………………………………60 參考文獻…………………………………………………62 圖目錄 圖1 研究流程圖…………………………………………4 圖2 財務分析領域知識擷取執行步驟…………………11 圖3 使用端進行資訊擷取系統互動情況………………20 圖4 文件前置處理流程…………………………………21 圖5 研究架構圖…………………………………………26 圖6 知識擷取流程圖……………………………………27 圖7 JessTab整合模式…………………………………31 圖8 知識庫擴充流程圖…………………………………32 圖9 知識結構化之進行過程……………………………35 圖10財務專家財報分析決策之PGB示意圖……………40 圖11短期償債能力次目標之PGB示意圖…………………41 圖12企業財務體質評價知識框架圖……………………42 圖13流動比率模糊集合…………………………………43 圖14財報分析知識狀態表徵圖…………………………45 圖15財務報表分析領域知識語意網路圖………………47 圖16領域知識本體論建構流程…………………………48 圖17領域知識本體論知識呈現…………………………49 圖18財務報表分析作業本體論…………………………50 圖19系統架構圖…………………………………………51 圖20系統展示畫面………………………………………52 圖21輸入財務比率模式之推理結果……………………52 圖22讀取財務報表模式之推理結果……………………53 圖23框架式推理架構圖…………………………………54 圖24讀取財務報表模式之推理架構圖…………………54 表目錄 表1 知識擷取方法與理論基礎之彙總…………………6 表2多重條件與結果之法則式知識表達法……………14 表3法則式知識表達法之功能…………………………14 表4框架式知識表達法所屬的元素及其描述…………16 表5初步完成的索引表…………………………………33 表6概念式索引表………………………………………33 表7企業財務體質評估準則……………………………36 表8企業財務體質之Context lattice………………44 表9框架式財報分析專家系統之短期償債能力各項變數分數之界定………………………………………………58 表10框架式財報分析專家系統各知識框架之法則數量………………………………………………………58 表11智慧型財報分析決策支援系統各知識框架之法則數量………………………………………………………59

    梁定澎,2002,決策支援系統與企業智慧,智勝出版社。
    謝劍平,2002,財務管理 新觀念與本土化,三版,智勝出版社。
    Ammar, S., Duncombe, W., Jump, B. and Wright, R. “Constructing a fuzzy-knowledge-based-system: an application for assessing the financial condition of public schools,” Expert Systems with Applications (27) 2004, pp:349-364.
    Baeza-Yates, R. and Ribeiro-Neto, B., Modern information retrival, The ACM Press, New York, 1999.
    Batty, D. and Kamel, M. S. “Automating knowledge acquisition: A propositional approach to representing expertise as an alternative to repertory grid technique,” IEEE Transactions on knowledge and data engineering (7:1) 1995, pp: 53-67.
    Blair, A., Debenham, J. and Edwards, J. “A comparative study of methodologies for designing IDSSs,” European Journal of Operational Reasearch (103) 1997, pp: 277-295.
    Boose, J. H., and Bradshaw, J. M. “Expertise transfer and complex problems: using Aquinas as a knowledge-acquisition workbench for knowledge-based systems,” International Journal of Man-Machine Studies (26) 1987 pp: 3-28.
    Brown, C. E. and Wensley, A. (eds), “Special Issue on Expert Systems in Accounting, Auditing, and Finance,” Expert System with Applications, (9:4) 1995, pp: 433-608.
    Cimiano, P., Hotho, A., Stumme, G., and Tane, J., “Conceptual knowledge processing with formal concept analysis and ontologies,” Lecture Notes in Computer Science (2961) 2004, pp: 189-207.
    Cooke, N. J. “Varieties of knowledge elicitation techniques,” International Journal of Human-Computer Studies (94) 1994, pp: 801-849.

    Corbridge, C., Rugg, G.., Major, N. P., Shadbolt, N. R. and Burton, A. M. “Laddering: technique and tool use in knowledge acquisition,” Knowledge Acquisition (6) 1994, pp: 315-341
    Davis, R., Shrobe, H. and Szolovits, P. “ What is a knowledge representation?,” AAAI (Spring) 1993, pp: 17-33.
    Devedzic, V. “A survey of modern knowledge modeling techniques,” Expert System with Applications (17) 1999, pp: 275-294.
    Durkin, J., Expert systems design and development, Prentice Hall, NJ, 1994.
    Ericsson, K. A. and Simon, H. A. Protocol analysis: verbal reports as data, MIT Press, Cambridge, 1984.
    Eriksson, H. “Using jesstab to integrate protégé and jess,” IEEE Computer Society (March/April) 2003, pp: 43-50.
    Forgy C. L. “Rete: A fast algorithm for the many pattern/many object pattern match problem,” Artificial intelligence (19) 1982, pp: 17-37.
    Friedman-Hill, E. J. “The JESS User Manual”, http://herzberg.ca.sandia.gov/jess/, 2001.
    Friedman-Hill, E. Jess in Action, Manning, CT, 2003.
    Gruber, T. R. “A translation approach to portable ontology specifications, “ Knowledge Acquisition (5) 1993, pp: 199-220.
    Gruber, T. R. “Towards principles for the design of ontologies used for knowledge sharing,” International Journal of Human-Computer Studies (43) 1995, pp: 907-928.
    Gupta, M. “Implications of Expert Systems for the Operations of Financial Institutions,” Technovation (20) 2000, pp: 509-516.
    Hartvigsen, G. “KABAL: A knowledge-based system for financial analysis in banking,” Expert Systems for Information Management (3:3) 1990, pp: 213-231.
    Hansen, J. V. and Messier Jr., W. F. “A knowledge-based, expert system for auditing advanced computer systems," European Journal of Operational Research (26) 1986, pp. 371-379.
    Heylighen, F. “Ontology introduction,” http://pespmc1.vub.ac.be/ONTOLI.html, 1995.
    Hinkle, D. N. “The change of personal constructs from the viewpoint of a theory of implications,” PhD Dissertation 1965, Ohio State University.
    Kelly, G. A. The psychology of personal constructs, Norton, New York, 1955.
    Kim M. J., and Han, I. “The discovery of experts’ decision rules from qualitative bankruptcy data using genetic algorithms,” Expert Systems with Applications (25) 2003, pp: 637-646.
    Kloptchenko, A., Eklund, T., Karlsson, J., Back, B., Vanharanta, H. and Visa A. “Combining data and text mining techniques for analyzing financial reports,” Intelligent Systems in Accounting, Finance and Management (12) 2004, pp: 29-41.
    Leonard, K. J. “The development of a rule based expert system model for fraud alert in consumer credit,” European Journal of Operational Research (80) 1995, pp: 350-356.
    Matsatsinis, N.F., Doumpos M. and Zopounidis, C. “Knowledge Acquisition and Representation for Expert Systems in the Field of Financial Analysis,” Expert Systems With Application (12:2) 1997, pp: 247-262.
    Minsky, M., “A Framework for Representation Knowledge,” Winston, P. (ed) The Psychology of Computer Vision 1975, McGraw-Hill, New York, pp: 211-277.
    Mittermayer, M. A. “Forecasting intraday stock price trends with text mining techniques,” Proceeding of the 37th Hawii International Conference on System Science 2004, pp: 1-10.
    Nedovic, L. and Devedzic, V. “Expert Systems in Finance-a Cross-Section of the Field,” Expert System with Application (23) 2002, pp: 49-66.
    Negnevitsky, M., Artificial Intelligence A Guide to Intelligent Systems, Addison-Wesley, England, 2002.
    Newell, A. and Simon, H. A. Human problem solvin, Prentice-Hall, NJ.
    Olson, J. R. and Biolsi, K. J. “Techniques for representing expert knowledge,” In Ericsson, K. A. and Smith, J. (eds) Toward a General Theory of Expertise 1991, Cambridge University Press, Cambridge, pp: 240-285.
    Orchard, R. “Fuzzy reasoning in jess: The FuzzyJ Toolkit and FuzzyJess,” Proceedings of the ICEIS 2001, Setubal, Portugal, pp: 533-542.
    Palama-dos-Reis, A. and Zahedi F. M. “Designing personalized intelligent financial decision support systems,” Decision Support Systems (26) 1999, pp: 31-47.
    Pinson, S. “A Multi-Expert Architecture for Credit Risk Assessment: The CREDEX System,” In O’Leary, D. E. & Watkins, P. R. (eds) Expert Systems in Finance 1992, pp: 37-64.
    Regoczei, S. B. and Hirst, G. “Knowledge and knowledge acquisition in the computational context,” In Hoffman R. R. (ed) The Psychology of Expertise: Cognitive Research and Empirical AI 1992, Springer-Verlag, New York, pp: 12-25.
    Shiu, S. C. K., Liu, J. N. K and Yeung, D. S., “Formal description and verification of hybrid rule/fram-based expert systems,” Expert Systems with Application (13:3) 1997, pp: 215-230.
    Smith, L. M. and McDuffie, R. S., “Using an Expert System to Teach Accounting for Business Combinations,” Expert System With Applications (10:2) 1996, pp: 181-191.
    Srinivasan, V. and Ruparel, B. “CGX: An expert support system for credit granting,” European Journal of Operational Research (45) 1990, pp: 293-308.
    Standford Medical Informatics, “Protégé-Frames User's Guide” http://protege.stanford.edu/doc/users.html, 2000.
    Tsang, C. and Bloor, C. “A Medical Expert System Using Object-Oriented Framework,” Seventh Annual IEEE Symposium on Computer-Based Medical Systems 1994, pp: 176-181.
    Tu, S. W., Eriksson, H., Gennari, J. H. and Shahar, Y. “Ontology-based configuration of problem-solving methods and eneration of knowledge-acquisition tools: application of Protégé-II to protocol-based decision support,” Artificial Intelligence in Medicine (7) 1995, pp: 257-289.
    Vranes, S., Stanojevic, M., Stevanovic, V. and Lucin, M. “INVEX; Investment Advisory Expert System,” Expert System with Applications 13 (2) 1996, pp: 105-119.
    Wagner, W. P., Otto, J. and Chung, Q. B. “Knowledge acquisition for expert systems in accounting and financial problem domains,” Knowledge-Based Systems (15) 2002, pp: 439-447.
    Wille, R., “Concept lattices and conceptual knowledge system,” Computers and Mathematics with Application (23:6-9) 1992, pp: 493-515.
    Yang, C. C. and Chung, A. “A personal agent for Chinese Financial news on the web,” Journal of the American Society for Information Science and Technology (53:2) 2002, pp: 186-196.
    Yang, S. C. “Reconceptualizing think-aloud methodology: refining the encoding and categorizing techniques via contextualized perspectives,” Computer in Human Behavior (19) 2003, pp: 95-115.
    Zopounidis, C., Doumpos, M. and Matsatsinis, N. F. “On the use of knowledge-based decision support systems in financial management: A survey,” Decision support systems (20) 1997, pp: 259-277.

    下載圖示 校內:2008-06-27公開
    校外:2008-06-27公開
    QR CODE