| 研究生: |
陳奎仰 Chen, Kuei-Yang |
|---|---|
| 論文名稱: |
龍膽石斑早期RAG及TCR-α基因之特性分析 Characterization of RAG and TCR-α genes at early stage in giant grouper |
| 指導教授: |
陳宗嶽
Chen, Tzong-Yueh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技與產業科學系 Department of Biotechnology and Bioindustry Sciences |
| 論文出版年: | 2020 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 龍膽石斑魚 、魚苗發育 、重組活化蛋白基因 、T 細胞受體 |
| 外文關鍵詞: | giant grouper, early stage development, recombination activating genes, T cell receptor |
| 相關次數: | 點閱:136 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
過去研究指出,重組活化基因( recombination activating genes, RAG1, RAG2)引導的V(D)J重組在後天免疫的發育過程中造就了淋巴細胞表面受體的多樣性,並得以對抗各種不同的抗原。因此,本研究選殖龍膽石斑重組活化基因(RAG1, RAG2) 和T細胞表面受體α鏈 ( T cell receptor α chain, TCR-α) 作為龍膽石斑早期後天免疫發育的代表性標記,進行特性分析。藉由即時聚合酶連鎖反應偵測發現RAG1, RAG2及 TCR-α在開翅期(12、14天)及收翅期(30天)表現量有上升趨勢,顯示魚苗型態變化期間同時也是後天免疫發展的重要時期。為了探究龍膽石斑T細胞受體之多樣性,本研究在TCR-α之Vα-Jα交界處進行多重序列比對,結果發現Vα-Jα交界處具有序列多樣性,使的TCR-α能夠辨識不同抗原。利用及時聚合酶連鎖反應快速檢驗及定量,並使用螢光原位雜交技術觀察DNA上TCR-α之V(D)J重組現象,發現龍膽石斑幼苗的胸腺大量進行 TCR-α之V(D)J重組事件,顯示胸腺可能是T細胞發育的重要器官。本研究提供龍膽石斑幼苗後天免疫發育之時間參考點,確認龍膽石斑中TCR-α的V(D)J重組現象,並證實胸腺可能是T細胞發育的主要器官。這些結果有助於了解龍膽石斑抵禦外來抗原的機制,希望減少疾病對水產養殖業的損失。
During the early stages of T lymphocytes and B lymphocytes, the diversity of functional T cell receptors and immunoglobulins is accomplished through V(D)J recombination, and is regulated by the recombination activating genes, RAG1 and RAG2. Therefore, this research characterizes the recombination activating genes and T lymphocytes at an early stage in giant grouper. The results of real-time PCR show that RAG1, RAG2 and TCR-α exhibit high expression at the kitting stage, which is about 12 to 14 days, and the diskitting stage at about 30 days, which is indicated that the period of morphology changes is also an important period for the development of adaptive immunity in early stage of giant grouper. To investigate the diversity of T cell receptors in giant grouper, multiple sequence alignment is performed on the Vα-Jα junction of ggTCR-α. The results show that the sequences of Vα-Jα junction are variable, which can result in ggTCR-α diversity allows recognition of different antigens. In addition, the results of a qPCR-based V(D)J recombination assay and DNA-fiber fluorescence in situ hybridization, show that the V(D)J recombination event is highly expressed in the thymus, which is indicated that thymus is an important organ for T cell development. These results provide a reference time point for the development of adaptive immunity in giant grouper, verified the V(D)J recombination event of TCR-α in giant grouper, and demonstrated that the thymus could be an important organ for the development of T lymphocytes. It is expected to contribute to the research on the resistance of early stage giant grouper to foreign pathogens and efforts to reduce losses in the aquaculture industry from diseases.
Abbas, A. K., Murphy, K. M., and Sher, A. Functional diversity of helper T lymphocytes. Nature 383, 787-793, 1996.
Agrawal, A., Eastman, Q. M., and Schatz, D. G. Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394, 744-751, 1998.
Arkoosh, M. R., and Kaattari, S. L. Development of immunological memory in rainbow trout (Oncorhynchus mykiss). An immunochemical and cellular analysis of the B cell response. Developmental and Comparative Immunology 15, 279-293, 1991.
Bajoghli, B., Dick, A. M., Claasen, A., Doll, L., and Aghaallaei, N. Zebrafish and Medaka: two teleost models of T-Cell and thymic development. International Journal of Molecular Sciences 20, 4179, 2019.
Barnett, R., and Larson, G. A phenol chloroform protocol for extracting DNA from ancient samples. In Ancient DNA: Methods and Protocols, Springer, Totowa, 13-19, 2012.
Bellon, S. F., Rodgers, K. K., Schatz, D. G., Coleman, J. E., and Steitz, T. A. Crystal structure of the RAG1 dimerization domain reveals multiple zinc-binding motifs including a novel zinc binuclear cluster. Nature Structural Biology 4, 586-591, 1997.
Call, M. E., Pyrdol, J., Wiedmann, M., and Wucherpfennig, K. W. The organizing principle in the formation of the T cell receptor-CD3 complex. Cell 111, 967-979, 2002.
Carmona, L. M., and Schatz, D. G. New insights into the evolutionary origins of the recombination-activating gene proteins and V(D)J recombination. The Federation of European Biochemical Societies Journal 284, 1590-1605, 2017.
Chen, W., Jia, Z., Zhang, T., Zhang, N., Lin, C., Gao, F., Wang, L., Li, X., Jiang, Y., Li, X., Gao, G. F., and Xia, C. MHC Class I presentation and regulation by IFN in bony fish determined by molecular analysis of the class I locus in grass carp. The Journal of Immunology 185, 2209, 2010.
Chomczynski, P., and Sacchi, N. The single-step method of RNA isolation by acid guanidinium thiocyanate phenol chloroform extraction: twenty-something years on. Nature Protocols 1, 581-585, 2006.
Danilova, N., Hohman, V. S., Sacher, F., Ota, T., Willett, C. E., and Steiner, L. A. T cells and the thymus in developing zebrafish. Developmental and Comparative Immunology 28, 755-767, 2004.
Dawar, F. U., Babu V, S., Kou, H., Qin, Z., Wan, Q., Zhao, L., Khan Khattack, M. N., Li, J., Mei, J., and Lin, L. The RAG2 gene of yellow catfish (Tachysurus fulvidraco) and its immune response against Edwardsiella ictaluri infection. Developmental and Comparative Immunology 98, 65-75, 2019.
Deriano, L., and Roth, D. B. Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage. Annual Review of Genetics 47, 433-455, 2013.
Durand, C., Charlemagne, J., and Fellah, J. S. RAG expression is restricted to the first year of life in the Mexican axolotl. Immunogenetics 51, 681-687, 2000.
Estensoro, I., Calduch-Giner, J. A., Kaushik, S., Perez-Sanchez, J., and Sitja-Bobadilla, A. Modulation of the IgM gene expression and IgM immunoreactive cell distribution by the nutritional background in gilthead sea bream (Sparus aurata) challenged with Enteromyxum leei. Fish and Shellfish Immunology 33, 401-410, 2012.
Farmanbar, A., Kneller, R., and Firouzi, S. RNA sequencing identifies clonal structure of T-cell repertoires in patients with adult T-cell leukemia/lymphoma. Nature Partner Journals Genomic Medicine 4, 10, 2019.
Findly, R. C., Niagro, F. D., Sweeney, R. P., Camus, A. C., and Dickerson, H. W. Rearranged T Cell receptor sequences in the germline genome of channel catfish are preferentially expressed in response to infection. Frontiers in Immunology 9, 2117-2122, 2018.
Fischer, C., Bouneau, L., Ozouf-Costaz, C., Crnogorac-Jurcevic, T., Weissenbach, J., and Bernot, A. Conservation of the T-cell receptor α/δ linkage in the teleost fish Tetraodon nigroviridis. Genomics 79, 241-248, 2002.
Fischer, U., Koppang, E. O., and Nakanishi, T. Teleost T and NK cell immunity. Fish and Shellfish Immunology 35, 197-206, 2013.
Flajnik, M. F., and Kasahara, M. Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nature Reviews Genetics 11, 47-59, 2010.
Forlenza, M., Dias, J. D. A. D. C., Vesely, T., Pokorova, D., Savelkoul, H. F. J., and Wiegertjes, G. F. Transcription of signal-3 cytokines, IL-12 and IFNαβ, coincides with the timing of CD8αβ up-regulation during viral infection of common carp (Cyprinus carpio). Molecular Immunology 45, 1531-1547, 2008.
Fransz, P. F., Alonso-Blanco, C., Liharska, T. B., Peeters, A. J., Zabel, P., and Jong, J. H. High-resolution physical mapping in Arabidopsis thaliana and tomato by fluorescence in situ hybridization to extended DNA fibres. Plant Journal 9, 421-430, 1996.
Frippiat, C., Kremarik, P., Ropars, A., Dournon, C., and Frippiat, J. P. The recombination-activating gene 1 of Pleurodeles waltl is transcribed in lymphoid tissues and in the central nervous system. Immunogenetics 52, 264-275, 2001.
Froger, A., and Hall, J. E. Transformation of plasmid DNA into E. coli using the heat shock method. Journal of Visualized Experiments 6, 253, 2007.
Fugmann, S. D., Messier, C., Novack, L. A., Cameron, R. A., and Rast, J. P. An ancient evolutionary origin of the Rag1/2gene locus. Proceedings of the National Academy of Sciences of the United States of America 103, 3728-3733, 2006.
Gellert, M. V(D)J Recombination: RAG proteins, repair factors, and regulation. Annual Review of Biochemistry 71, 101-132, 2002.
Grawunder, U., Leu, T. M. J., Schatz, D. G., Werner, A., Rolink, A. G., Melchers, F., and Winkler, T. H. Down-regulation of RAG1 and RAG2 gene expression in preB cells after functional immunoglobulin heavy chain rearrangement. Immunity 3, 601-608, 1995.
Greenhalgh, P., Olesen, C. E., and Steiner, L. A. Characterization and expression of recombination activating genes (RAG-1 and RAG-2) in Xenopus laevis. The Journal of Immunology 151, 3100, 1993.
Gomez, C. A., Ptaszek, L. M., Villa, A., Bozzi, F., Sobacchi, C., Brooks, E. G., Notarangelo, L. D., Spanopoulou, E., Pan, Z. Q., Vezzoni, P., Cortes, P., and Santagata, S. Mutations in conserved regions of the predicted RAG2 kelch repeats block initiation of V(D)J recombination and result in primary immunodeficiencies. Molecular and Cellular Biology 20, 5653-5664, 2000.
Gudmundsdóttir, S., Magnadóttir, B., Bjornsdóttir, B., Arnadottir, H., and Gudmundsdottir, B. K. Specific and natural antibody response of cod juveniles vaccinated against Vibrio anguillarum. Fish and Shellfish Immunology 26, 619-624, 2009.
Hansen, J. D., and Kaattari, S. L. The recombination activating gene 1 (RAG1) of rainbow trout (Oncorhynchus mykiss): cloning, expression, and phylogenetic analysis. Immunogenetics 42, 188-195, 1995.
Hansen, J. D., Landis, E. D., and Phillips, R. B. Discovery of a unique Ig heavy-chain isotype (IgT) in rainbow trout: implications for a distinctive B cell developmental pathway in teleost fish. Proceedings of the National Academy of Sciences of the United States of America 102, 6919-6924, 2005.
Hayes, S. M., and Love, P. E. Stoichiometry of the murine gammadelta T cell receptor. The Journal of Experimental Medicine 203, 47-52, 2006.
Heng, H. H. Q., and Shi, X. M. From free chromatin analysis to high resolution fiber FISH. Cell Research 7, 119-124, 1997.
Heemstra, P. C., and Randall, J. E. Groupers of the world. FAO Species Catalogue, Food and Agriculture Organization, Rome 174, 1993.
Hertzog, P. J., Samarajiwa, S. A., and de Weerd N. A. Type I interferon receptors: biochemistry and biological functions. Journal of Biological Chemistry 282, 20053-20057, 2007.
Hesse, J. E., Lieber, M. R., Mizuuchi, K., and Gellert, M. V(D)J recombination: a functional definition of the joining signals. Genes and Development 3, 1053-1061, 1989.
Hitzfeld, B. Fish Immune System. In Encyclopedic Reference of Immunotoxicology, Springer, Berlin, 242-245, 2005.
Hoebe, K., Janssen, E., and Beutler, B. The interface between innate and adaptive immunity. Nature Immunology 5, 971-974, 2004.
Hutchison, V. H., and Maness, J. D. The role of behavior in temperature acclimation and tolerance in ectotherms. American Zoologist 19, 367-384, 1979.
Huttenhuis, H. B. T., Huising, M. O., Sanchez, N. A., Taverne-Thiele, A. J., Stroband, H. W. J., and Rombout, J. H. W. M. Rag expression identifies B and T cell lymphopoietic tissues during the development of common carp (Cyprinus carpio). Developmental and Comparative Immunology 29, 1033-1047, 2005.
Jackson, S. A., Wang, M. L., Goodman, H. M., and Jiang, J. Application of fiber-FISH in physical mapping of Arabidopsis thaliana. Genome 41, 566-572, 1998.
Janeway, C. A., Jones, B., and Hayday, A. Specificity and function of T cells bearing γδ receptors. Immunology Today 9, 73-76, 1988.
Jiang, N., Fan, Y., Zhou, Y., Liu, W., Robert, J., and Zeng, L. Rag1 and Rag2 gene expressions identify lymphopoietic tissues in juvenile and adult Chinese giant salamander (Andrias davidianus). Developmental and Comparative Immunology 87, 24-35, 2018.
Johansen, R., Sommerset, I., Torud, B., Korsnes, K., Hjortaas, M. J., Nilsen, F., Nerland, A. H., and Dannevig, B. H. Characterization of nodavirus and viral encephalopathy and retinopathy in farmed turbot, Scophthalmus maximus. Journal of Fish Diseases 27, 591-601, 2004.
Kato, G., Goto, K., Akune, I., Aoka, S., Kondo, H., and Hirono, I. CD4 and CD8 homologues in Japanese flounder, Paralichthys olivaceus: differences in the expressions and localizations of CD4-1, CD4-2, CD8α and CD8β. Developmental and Comparative Immunology 39, 293-301, 2013.
Kapitonov, V. V., and Koonin, E. V. Evolution of the RAG1-RAG2 locus: both proteins came from the same transposon. Biology Direct 10, 20, 2015.
Kuo, H. C., Wang, T. Y., Chen, P. P., Chen, Y. M., Chuang, H. C., and Chen, T. Y. Real-time quantitative PCR assay for monitoring of nervous necrosis virus infection in grouper aquaculture. Journal of Clinical Microbiology 49, 1090-1096, 2011.
Kuo, Y. T., Hsu, H. L., Yeh, C. H., and Chang, S. B. Application of a modified drop method for high-resolution pachytene chromosome spreads in two Phalaenopsis species. Molecular Cytogenetics 9, 44, 2016.
Lee, J. W., Yang, H., Noh, J. K., Kim, H. C., Park, C. J., Park, J. W., Hwang, I. J., Kim, S. Y., and Lee, J. H. RAG-1 and IgM Genes, Markers for early development of the immune system in Olive Flounder, Paralichthys olivaceus. Development and Reproduction 18, 99-106, 2014.
Li, D., and Liu, S. Water quality evaluation. In Water Quality Monitoring and Management, Elsevier, Netherlands, 113-159, 2019.
Lieber, M. R., Hesse, J. E., Lewis, S., Bosma, G. C., Rosenberg, N., Mizuuchi, K., Bosma, M. J., and Gellert, M. Abnormal V(D)J recombination in murine severe combined immune deficiency. Absence of Coding Joints and Formation of Alternative Products, Springer, Berlin, 69-75, 1989.
Lin, C. C., Lin, J. H. Y., Chen, M. S., and Yang, H. L. An oral nervous necrosis virus vaccine that induces protective immunity in larvae of grouper (Epinephelus coioides). Aquaculture 268, 265-273, 2007.
Lin, J. H. Y., Lin, H. T., Lopez, C., Chen, T. Y., Chen, M. S., and Yang, H. L. A comparison of the expression of immunity‐related rag 1 and ikaros genes with histogenesis of the thymus in Epinephelus malabaricus. Aquaculture Research 39, 252-262, 2008.
Lu, M. W., Chao, Y. M., Guo, T. C., Santi, N., Evensen, O., Kasani, S. K., Hong, J. R., and Wu, J. L. The interferon response is involved in nervous necrosis virus acute and persistent infection in zebrafish infection model. Molecular Immunology 45, 1146-1152, 2008.
Malissen, M., Trucy, J., Jouvin Marche, E., Cazenave, P. A., Scollay, R., and Malissen, B. Regulation of TCR α and β gene allelic exclusion during T-cell development. Immunology Today 13, 315-322, 1992.
Mao, M. G., Lei, J. L., Alex, P. M., Hong, W. S., and Wang, K. J. Characterization of RAG1 and IgM (mu chain) marking development of the immune system in red-spotted grouper (Epinephelus akaara). Fish and Shellfish Immunology 33, 725-735, 2012.
Mirhendi, H., Diba, K., Rezaei, A., Jalalizand, N., Hosseinpur, L., and Khodadadi, H. Colony PCR is a rapid and sensitive method for DNA amplification in yeasts. Iranian Journal of Public Health 36, 40-44, 1970.
Mori, K. I, Nakai, T., Nagahara, M., Muroga, K., Mekuchi, T., and Kanno, T. A. Viral disease in hatchery-reared larvae and juveniles of red spotted grouper. Fish Pathology 26, 209-210, 1991.
Morlais, I., Grebaut, P., Bodo, J. M., Djoha, S., Cuny, G., and Herder, S. Detection and identification of trypanosomes by polymerase chain reaction in wild tsetse flies in Cameroon. Acta Tropica 70, 109-117, 1998.
Nagasawa, K., and Lacierda, E. Disease of cultured groupers. Southest Asian Fisheries Development Center, Aquaculture Development, Philippenes, 3-8, 2004.
Nishizawa, T., Mori, K. I., Furuhashi, M., Nakai, T., Furusawa, I., and Muroga, K. Comparison of the coat protein genes of five fish nodaviruses, the causative agents of viral nervous necrosis in marine fish. Journal of General Virology 76, 1563-1569, 1995.
Pan, K., and Deem, M. W. A multi-scale model for correlation in B cell VDJ usage of zebrafish. Physical Biology 8, 055006, 2011.
Peixoto, B. R., Mikawa, Y., and Brenner, S. Characterization of the recombinase activating gene-1 and 2 locus in the Japanese pufferfish, Fugu rubripes. Gene 246, 275-283, 2000.
Ramirez-Gomez, F., Greene, W., Rego, K., Hansen, J. D., Costa, G., Kataria, P., and Bromage, E. S. Discovery and characterization of secretory IgD in rainbow trout: secretory IgD is produced through a novel splicing mechanism. The Journal of Immunology 188, 1341, 2012.
Romano, N., Ceccariglia, S., Mastrolia, L., and Mazzini, M. Cytology of lymphomyeloid head kidney of Antarctic fishes Trematomus bernacchii (Nototheniidae) and Chionodraco hamatus (Channicthyidae). Tissue and Cell 34, 63-72, 2002.
Rombout, J. H. W. M., Yang, G., and Kiron, V. Adaptive immune responses at mucosal surfaces of teleost fish. Fish and Shellfish Immunology 40, 634-643, 2014.
Salinas, I., Zhang, Y. A., and Sunyer, J. O. Mucosal immunoglobulins and B cells of teleost fish. Developmental and Comparative Immunology 35, 1346-1365, 2011.
Sakano, H., Hüppi, K., Heinrich, G., and Tonegawa, S. Sequences at the somatic recombination sites of immunoglobulin light-chain genes. Nature 280, 288-294, 1979.
Schatz, D. G., and Yanhong, J. Recombination centres and the orchestration of V(D)J recombination. Nature Reviews Immunology 11, 251-263, 2011.
Secombes, C. J., Hardie, L. J., and Daniels, G. Cytokines in fish: an update. Fish and Shellfish Immunology 6, 291-304, 1996.
Seelye, S. L., Chen, P. L., Deiss, T. C., and Criscitiello, M. F. Genomic organization of the zebrafish (Danio rerio) T cell receptor alpha/delta locus and analysis of expressed products. Immunogenetics 68, 365-379, 2016.
Somamoto, T., Miura, Y., Nakanishi, T., and Nakao, M. Local and systemic adaptive immune responses toward viral infection via gills in ginbuna crucian carp. Developmental and Comparative Immunology 52, 81-87, 2015.
Somamoto, T., Yoshiura, Y., Sato, A., Nakao, M., Nakanishi, T., Okamoto, N., and Ototake, M. Expression profiles of TCRβ and CD8α mRNA correlate with virus-specific cell-mediated cytotoxic activity in ginbuna crucian carp. Virology 348, 370-377, 2006.
Stet, R. J., Mudde, K., Hermsen, T., Shum, B. P., and Grimholt, U. Unique haplotypes of co-segregating major histocompatibility class II A and class II B alleles in Atlantic salmon (Salmo salar) give rise to diverse class II genotypes. Immunogenetics 54, 320-331, 2002.
Suetake, H., Araki, K., and Suzuki, Y. Cloning, expression, and characterization of fugu CD4, the first ectothermic animal CD4. Immunogenetics 56, 368-374, 2004.
Tang, X., Nakata, Y., Li, H. O., Zhang, M., Gao, H., Fujita, A., Sakatsume, O., Ohta, T., and Yokoyama, K. The optimization of preparations of competent cells for transformation of E. coli. Nucleic Acids Research 22, 2857-2858, 1994.
Temin, H. M., and Mizutani, S. Viral RNA-dependent DNA Polymerase: RNA-dependent DNA polymerase in virions of rous sarcoma virus. Nature 226, 1211-1213, 1970.
Toda, H., Araki, K., Moritomo, T., and Nakanishi, T. Perforin-dependent cytotoxic mechanism in killing by CD8 positive T cells in ginbuna crucian carp, Carassius auratus langsdorfii. Developmental and Comparative Immunology 35, 88-93, 2011.
Uribe, C., Folch, H., Enríquez, R., and Moran, G. Innate and adaptive immunity in teleost fish: a review. Veterinarni Medicina 56, 486-503, 2011.
Vazquez, M. I., Catalan-Dibene, J., and Zlotnik, A. B cells responses and cytokine production are regulated by their immune microenvironment. Cytokine 74, 318-326, 2015
Voytas, D. Agarose gel electrophoresis. Current Protocols in Protein Science, 1-3, 1998.
Wang, K., Gan, L., Kunisada, T., Lee, I., Yamagishi, H., and Hood, L. Characterization of the Japanese pufferfish (Takifugu rubripes) T-cell receptor α locus reveals a unique genomic organization. Immunogenetics 53, 31-42, 2001.
Wang, X., Tan, X., Zhang, P. J., Zhang, Y., and Xu, P. Recombination-activating gene 1 and 2 (RAG1 and RAG2) in flounder (Paralichthys olivaceus). Journal of Biosciences 39, 849-858, 2014.
Wang, J., Lim, K., Smolyar, A., Teng, M., Liu, J., Tse, A. G., Liu, J., Hussey, R. E., Chishti, Y., Thomson, C. T., Sweet, R. M., Nathenson, S. G., Chang, H. C., Sacchettini, J. C., and Reinherz, E. L. Atomic structure of an alphabeta T cell receptor (TCR) heterodimer in complex with an anti-TCR fab fragment derived from a mitogenic antibody. The European Molecular Biology Organization journal 17, 10-26, 1998.
Weier, H. U. G. DNA fiber mapping techniques for the assembly of high-resolution physical maps. Journal of Histochemistry and Cytochemistry 49, 939-948, 2001.
Wermenstam, N. E., and Pilstrom, L. T-cell antigen receptors in Atlantic cod (Gadus morhua L.): structure, organisation and expression of TCR α and β genes. Developmental and Comparative Immunology 25, 117-135, 2001.
Wilfinger, W. W., Mackey, K., and Chomczynski, P. Effect of pH and ionic strength on the spectrophotometric assessment of nucleic acid purity. BioTechniques 22, 474-481, 1997.
Willett, C. E., Cherry, J. J., and Steiner, L. A. Characterization and expression of the recombination activating genes (rag1 and rag2) of zebrafish. Immunogenetics 45, 394-404, 1997.
Wu, Y. L., Lee, M. A., Chen, L. C., Chan, J. W., and Lan, K. W. Evaluating a suitable aquaculture site selection model for Cobia (Rachycentron canadum) during extreme events in the enner bay of the penghu islands, Taiwan. Remote Sensing 12, 2689, 2020.
Yamaguchi, T., and Dijkstra, J. M. Major Histocompatibility complex (MHC) genes and disease resistance in Fish. Cells 8, 378, 2019.
Yazawa, R., Cooper, G. A., Beetz, S, M., Robb, A., Mckinnel, L., Davidson, W. S., and Koop, B. F. Functional adaptive diversity of the Atlantic salmon T-cell receptor gamma locus. Molecular Immunology 45, 2150-2157, 2008.
Young, M, L., Jeong-Ho, L., Jae, K, N., Hyun, C, K., Choul-Ji, P., Jong-Won, P., In, J, H., and Sung, Y, K. Stage and tissue specific expression of four TCR subunits in Olive flounder. Development and Reproduciton 17, 329-335, 2013.
Zhang, Y. H., Shetty, K., Surleac, M. D., Petrescu, A. J., and Schatz, D. G. Mapping and quantitation of the interaction between the recombination activating gene proteins RAG1 and RAG2. Journal of Biological Chemistry 290, 11802-11817, 2015.
Zhang, X. L., Lu, Y. S., Jian, J. C., and Wu, Z. H. Cloning and expression analysis of recombination activating genes (RAG1/2) in red snapper (Lutjanus sanguineus). Fish and Shellfish Immunology 32, 534-543, 2012.
Zhong, X. B., Hans de Jong, J., and Zabel, P. Preparation of tomato meiotic pachytene and mitotic metaphase chromosomes suitable for fluorescence in situ hybridization (FISH). Chromosome Research 4, 24-28, 1996.