| 研究生: |
施建成 Shih, Jam-Chen |
|---|---|
| 論文名稱: |
線聚焦式超聲波換能器之蘭姆波量測分析與應用 Measurement and Application of Waves Using Line Focusing PVDF Transducers |
| 指導教授: |
李永春
Lee, Yung-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 藍姆波 、聲彈性效應 、鈮酸鋰 、聲塑性效應 、線聚焦式超聲波換能器 、頻散曲線 |
| 外文關鍵詞: | Lamb wave, LiNbO3, Acoustoelastic Effect, Acoustoplastic Effect, line-focus PVDF focusing transducer, Dispersion curve |
| 相關次數: | 點閱:91 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中以PVDF壓電薄膜自製線聚焦式超聲波換能器,並根據此換能器構成一套散焦量測系統,具有5MHz~20MHz的寬頻量測能力,由於換能器之線聚焦特性,可針對非等向性試件量測不同方向的波速,包括表面波與平板的蘭姆波,尤其可以得到相當準確的蘭姆波頻散曲線。
藉由此系統,本文探討受應力作用及不同程度塑性變形之平板試片的聲彈性效應(Acoustoelastic Effect)與聲塑性效應(Acoustoplastic Effect),量測平板試片之藍姆波的頻散曲線,並由實驗所獲得的頻散曲線變化,了解藍姆波與應力應變之間的聲彈性效應與聲塑性效應。
文中另一個研究重點為非等向性鈮酸鋰(LiNbO3)壓電板受導電溶液負載時蘭姆波頻散曲線的變化情形,實驗量測不同波傳方向與不同溶液導電度下的藍姆波頻散曲線,討論頻散曲線變化趨勢及各角度對導電度的靈敏性。
In this thesis, line-focus PVDF focusing transducer and its measurement system operating from 5 MHz to 20 MHz have been applied to the measurements of Lamb wave velocities and dispersion curves. Since the transducer is line-focused, the wave velocity measurement can be along any specific direction of anisotropic samples. Good accuracy in velocity measurements and low cost make the transducer and the system a useful tool for ultrasonic non-destructive evaluation.
This thesis first investigates the acoustoelastic and acoustoplastic effects of Lamb waves in an isotropic plate. The Lamb wave dispersion curves for thin plates subjected to several different elastic strains and plastic deformation are experimentally measured. The measurement results show that the wave velocities are indeed influenced by the elastic and plastic deformation. However, the trends for elastic and plastic cases are quite different.
Furthermore, the influence of conducting fluid on the Lamb wave propagation characteristics of a piezoelectric plated is investigated. A X-cut LiNbO3 thin plate is used as the sample. The measurement data indicates a systematic change in dispersion curves when the piezoelectric plate is immersed in a conductive fluid with different conductivity. The angular dependence of the conductive fluid-loading effect is also studied.
[1] D. Xiang, N. N. Hsu and G. V. Blessing, “ The Design, Construction and Application of a Large Aperture LensLess Line-Focus PVDF Transducer,”Utrasonics, 34, pp.641-647 (1996).
[2] D. Xiang, N. N. Hsu and G.V. Blessing, “Material Characterization by a Time-Resolved and Polarization-Sensitive Ultrasonic Technique,” QNDE, 15,pp.1431-1438 (1996).
[3] N. N. Hsu, D. Xiang, S. E. Fick and G. V. Blessing,“Time and Polarization Resolved Ultrasonic Measurements Using A Lensless Line-Focus Transducer,”Proceeding IEEE Ultrasonics Symposium, pp.867-871 (1995).
[4] D. Xiang, N. N. Hsu and G.V. Blessing, “Utrasonic Leaky Wave Measurements for Materials Evaluation,” in Nondestructive Characterization of Materials, C.O. Rund and R.E. Green, eds., Plenum Press, New York (1997).
[5] D. Xiang, N. N. Hsu and G.V. Blessing, “Time Domain Waveforms of a Line-Focus Transducer Probing Anisotropic Solids,” in:Nondestructive Characterization of Materials, C. O. Rund and R. E. Green, eds., Plenum Press, New York (1997).
[6] N. N. Hsu, D. Xiang and G. V. Blessing, “Time Resolved Ultrasonic Body Wave Measurements of Material Anisotropy Using A Lensless Line-focus Transducer,” Proceeding IEEE Ultrasonics Symposium, pp1261-1264 (1998).
[7] C. H. Yang,“Characterization of Piezoelectrics Using Line Focus Transducer,” in: Proceedings of 15th Conference of Chinese Society of Mechanical Engineering, pp785-790(1998).
[8] Y. C. Lee,“Measurements of Leaky Lamb Wave Propagation in Metal sheets,”Jpn . J. Appl. Phys., 40, pp.359-363(2001).
[9] Y. C. Lee, “Measurements of dispersion curve of leaky Lamb waves using a lensless line-focus transducer,”Ultrasonics, 39 , pp297-396 (2001).
[10] Y. C. Lee and S. P. Ko, ”Measuring dispersion curves of acoustic wave using PVDF line-focus transducers,” NDT&E international, 34, pp.191-197 (2001).
[11] Y. C. Lee and S. W. Cheng, “Measuring Lamb Wave Dispersion Curves of Bi -Layered Plate and Its Application on Material Characterization of Coating,” IEEE Tran. Ultraso. Ferroelect. Freq. Control, 48(3), pp.830-836(2001).
[12] J. Kushibiki and N. Chubachi, “Material Characterization by Line-Focus Beam Acoustic Microscopy,” IEEE Trans. Sonics Ultranson., 32, pp.189-212 (1985).
[13] N. N. Hsu, S. E. Fick, and G. V. Blessing, “Green’s Function of a Liquid/Solid Interface and Application to Fluid Coupled Ultrasonic Materials Testing,” Proceeding IEEE Ultrasonics Symposium, pp.395-398 (1992).
[14] N. N. Hsu, D. Xiang, S. E. Fick and G. V. Blessing, “Transient Analysis of a Line-Focus Transducer Probing a Liquid/Solid Interface,” QNDE, 15, pp.995-1002 (1996).
[15] I. A. Viktorov, Raylrigh and Lamb Waves: Physical Theory and Application , Plenum Press, New York (1967).
[16] A. Sawaguchi and K. Toda, “System for measuring Sound Velocity in Liquid Using Leaky Lamb Wave Mode on Y-128°Rotation Y-X Cut LiNbO3 Substrate,”Jpn. J. Appl. Phys., 30(9B), pp.2402-2405 (1991).
[17] A. H. Nayfeh and H. T. Chien, “The Influence of Piezoelectricity on Free and Reflected Waves from Fluid-Loaded Anisotropic Plate,” J. Acoust. Soc. Am., 91(3), pp.1250-1261 (1991).
[18] A. Sawaguchi and K. Toda, “Lamb Wave Propagation Characteristics on Water-Loaded LiNbO3 Thin Plate,” Jpn. J. Appl. Phys., 32, pp.2388- 2391 (1993).
[19] C. H. Yang and D. E. Chimenti, “Acoustic Waves in a Piezoelectric Plate Loaded by a Dielectric Fluid,” Applied Physics Letter, 63 (10), pp1328-1330 (1993).
[20] C. H. Yang and D. E. Chimenti, “Acoustic Waves in a Piezoelectric Plate Loaded by a Dielectric Fluid, I. Analysis,” J. Acoust. Soc. Am., 97(4), pp 2103-2109 (1995).
[21] C. H. Yang and D. E. Chimenti, “Acoustic Waves in a Piezoelectric Plate Loaded by a Dielectric Fluid, II. Experiments,” J. Acoust. Soc. Am., 97 (4) pp.2110-2115 (1995).
[22] C.H. Yang, “Guided Wave propagation in a Piezoelectric Plate Immersed in a Conductive Fluid,” Proceeding IEEE Ultrasonics Symposium, pp.415-418 (1998).
[23] R. A. Toupin and W. Sachse, “Sound Wave in Deformed Perfectly Materials Acoustoelastic Effect,” J. Acoust. Soc. Am., 33, pp.216-255 (1961).
[24] Y. H. Pao, W. Sachse and H. Fukuoka“Acoustoelasticity and Ultrasonic Measurements of Residual Stress,” New York, Ch.2, pp.61-143 (1984).
[25] 楊哲化,黃敏峰, “壓電材料板之蘭姆波頻散行為探討,”中華民國第二十五屆全國力學會議, pp.2805-2816 (2001).
[26] 張建信, 高分子壓電薄膜的Pspice模擬應於超聲波換能器, 成功大學機械工程學系碩士論文, pp.42-49 (2000).
[27] 行政院環保署 “水中導電度測定方法-導電度計法”
http://www.niea.gov.tw/niea/WATER/W20351B.htm