簡易檢索 / 詳目顯示

研究生: 官志達
Kuan, Chih-Ta
論文名稱: 應用DQEM於求解具剪變形之任意複合變斷面樑結構物之振動問題
指導教授: 陳長鈕
Chen, Chang-New
學位類別: 碩士
Master
系所名稱: 工學院 - 造船及船舶機械工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 49
中文關鍵詞: 數值積分表示微分元素法數值積分表示微分法
外文關鍵詞: DQEM, DQM
相關次數: 點閱:72下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 數值積分表示微分元素法(DQEM)為一種分析連體力學問題的數值方法。此數值分析法除了能有系統地編成電腦程式外,因其具有較高的耦合特性,且考慮所有的基本條件,故使用較少的離散點就能得到收斂,可有效地求得精確解,大幅降低計算機的運算量。
    數值積分有限元素法是將欲分析的結構物分割成有限個元素,再利用數值積分表示微分法的技巧,對定義於各個元素內的統御微分或偏微分方程式,兩個相鄰元素相連接的相鄰邊界上之轉接條件式及領域邊界上之邊界條件式,做數值的離散化。
    本篇論文主要是針對I型樑的振動問題做研究,以期望能減少結構物的變形量,並加以分析其振動頻率對結構物的影響。往後的研究方向,就朝向更具體實際的複雜結構物做更好的驗證。

    The differential quadrature element method (DQEM) is a numerical analysis method for analyzing continuum mechanics problems. The numerical procedure of this method can systematically implemented into a computer program. The coupling of solutions at discrete points is strong. In addition, all fundamental relations are considered in constructing the overall discrete points, and accurate results can be obtained by using less arithmetic operations which can reduce the computer CPU time required.
    Like FEM, in using DQEM to solve a problem the domain is separated into many elements. The DQ discretization is carried out on an element-basis. The discretized governing differential or partial differential equations defined on the elements, transition condition on inter-element boundaries and boundary conditions are assembled to
    obtain an overall algebraic system.
    In this paper, the DQEM analysis model of nonprismatic I beams resting on elastic foundations is developed, and the related computer problem is implemented. Sample problems of static deformation and free vibration are analyzed. They prove that the developed DQEM analysis
    model is excellent.

    AbstractⅠ 摘要Ⅱ 誌謝.Ⅲ 目錄..Ⅳ 表目錄Ⅵ 圖目錄Ⅶ 符號表Ⅸ 第一章 緒論 1-1 研究動機1 1-2 文獻回顧2 第二章 數值積分表示微分法(DQM)3 2-1 DQM的簡述3 2-2 DQM的數學模式4 2-3 計算權重係數的方法5 2-3-1 方法一6 2-3-2 方法二7 2-3-3 方法三8 第三章 數值積分表示微分元素法(DQEM)12 3-1 有限元素法(FEM)12 3-2 有限元素法的簡述13 3-3 DQEM的簡述14 3-4 DQEM的求解步驟14 3-5 兩者之間的差別15 第四章 變斷面剪變形樑振動問題模式17 4-1 模型建立17 4-2 I型斷面剪變形懸臂樑34 4-3 I型斷面剪變形FIX-PIN樑37 4-4 I型斷面剪變形FIX-FIX樑40 4-5 I型斷面剪變形簡支樑43 第五章結論46 參考文獻47 附錄一 五個離散點的權重係數一覽表A 附錄二 六個離散點的權重係數一覽表B

    【1】 Bellman,R.and Casti,J.,”Differential quadrature and long term integration,”Journal of Mathematical Analysis and
    Applications,Vol. 34, pp.235-238(1971).
    【2】 Bellman, R., Kashef, B. G., and Casti, J.”Differential quadrature: a technique for the rapid solation of non-linear partial differential eruations,”Journal of Computational Physics,Vol. 10, pp. 40-52
    (1972.).
    【3】 Bert, C. W., Jang, S. K., and Striz, A. G., “Two new approximate methods for analyzing free vibration of structural components,”
    AIAA Journal, Vol.26, No. 5,pp.612-618(1988).
    【4】 Bert, C. W., Wang, X., and Striz, A. G., “Differential quadrature for static and free vibration analysis of anisotropic plates by differebtial quadrature method : a semi-analytical approach ,”
    Journal of Sound Vibration, Vol. 30, pp. 1737-1744(1993).
    【5】 Bert, C. W. and Malik, M., “Free vibration analysis of tapered rectangular platrs by differential quadrature method : a semi-analytical approach ,” Journal of Sound Vibration, Vol. 190,
    No. 1, pp. 41-63(1996).
    【6】 Bhat, R. B., Laura, P. A. A., Gutierrez, R. G., Cortinez, V. H., and Sanzi, V. H., “Numerical experiments on the determination of natural frequencies of transverse vibrations of rectangular plates of non-uniform thickness,” Journal of Sound Vibration, Vol. 138,
    pp. 205-219(1990).
    【7】 Civan, F. and Sliepcevich, C. M., “Differentail quadrature for multidimensional problems,” Journal of Mathematical Analysis
    and Applications, Vol. 101, pp. 423-443(1984).
    【8】 ”I-DEAS Master Series 4.0,” SDRC(1996).
    【9】 Jang, S. K., Bert, C. W., and Striz, A. G.,”Application of differrntail quadrature to static analysis of structural components,” International Journal for Numerical Methods in Engineering, Vol. 28, pp. 561-577(1989).
    【10】Kukreti, A. R., Farsa, J., and Bert, C. W.,”Differential quadrature and rayleigh-ritz methods to determine the fundamental frequencises of simply supported rectangular plates with linerly varying thickness,” Journal of Sound Vibration, Vol.189, No.1, pp
    103-122(1996).
    【11】Malik, M. and Bert, C. W., “Differential quadrature solation for steady state incompressible and compressible lubrication problems,” ASME Journal of Tribology, Vol. 116, pp. 296-302
    (1994).
    【12】林育南,“數值積分表示微分元素法的研究”,國立成功大學造
    船暨船舶工程學系碩士論文,(1995).
    【13】黃志偉,“數值積分表示微分元素法剪變形變斷面樑分析模
    式”, 國立成功大學造船暨船舶工程學系碩士論文,(1997).
    【14】謝明祺, ‘數值積分表示微分元素法具彈性基座樑分析模式’,國
    立成功大學造船暨船舶工程學系碩士論文,(1997).
    【15】Sung K.Jang, Charles W Bert and Alfred G. Striz,”Application of Differential Quadrature to Staric Analysis of Structral Components”, International Journal for Numerical Methods in
    Engineering, Vol. 28, pp. 561-577(1989).
    【16】J.O. Mingle, “The Method of Differential Quadrature for Transient
    Nonlinear Diffusion”,J. Math. Anal., Vol. 60, pp. 569-599(1977).
    【17】Herbert Reismann and Peter S. Pawlik, “Elasticity Theory and
    Applications”, Chp 6, pp. 217-221.
    【18】Gere and Timoshenko,”Mechanics of Meterials”, PWS-KENT,
    Third Edition.
    【19】J.B.CARR, The Effect of Shear Flexibility and Rotatoty Inertia on the Nateral Frequencies of Uniform Beams,The aeronautical
    Quarterly ,Vol. 21,pp. 79-90(1970).
    【20】C.N.Chen,”A differential Quadrature Element Method”, the third U.S.National congress on Computional Mechanics, Dalls, USA,(1995).
    【21】C.N. Chen, “The-Dimentional Truss Model of the Differential Quadrature Element Method”, Submitted to Computer Methods in
    Applied Mechanics and Enginessring.
    【22】C.N.Chen,”The-Dimensional Frame Model of the Differential Quadrature Element Method”, Computers and Structures, in press.
    【23】G.R.Cowper,”The Shear Coefficient in Timoshenko’s
    Beam,”Journal of Applied Mechanics,pp. 335-340(1966).

    下載圖示 校內:立即公開
    校外:2002-07-31公開
    QR CODE