簡易檢索 / 詳目顯示

研究生: 李承樺
Lee, Cheng-Hua
論文名稱: 以曲面薄層強化之三明治板的三設計樣之評估
Assessment of Three Designs of Sandwich Panels Stiffened with Curved Membranes
指導教授: 許書淵
Hsu, Su-Yuen
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 90
中文關鍵詞: 三明治板複合材料薄層有限元素分析挫曲脫膠損毀容忍度
外文關鍵詞: sandwich panel, composite material, membrane, buckling, disbond
相關次數: 點閱:150下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出三種MSPT (Membrane-Stiffened Sandwich Panel Technology) 結構藉縫合技術而實現與隔框一體成型、無開孔之完全疊層結構的設計構想,藉此可免除Boeing與NASA所硏發之PRSEUS (Pultruded Rod Stitched Efficient Unitized Structure) 結構中開孔所引起的強度問題,與裝置預固化棒的製程問題。其中MSPT係利用在三明治結構中加入曲面薄層設計,例如加入曲面複材疊層。利用ABAQUS有限元素分析軟體建立各設計構想和PRSEUS模型,施予結構壓力、隔框方向與縱樑方向負載。透過線性挫曲分析、非線性分析、複材脫層非線性分析,比較各結構在完整如初與複材疊層和發泡芯材間發生嚴重脫膠的情況下,結構行為上的差異。就線性挫曲分析結果而言,各構型在隔框方向強度都優於PRSEUS許多,在縱樑方向強度也皆優於PRSEUS。以非線性分析而言,構型一、二在抗壓力的剛性表現上勝於PRSEUS。於縱樑方向負載到達到各構型線性挫曲值之前,變形已有非線性現象產生,但PRSEUS的變形在負載到達此之前幾乎全然線性。然而非線性分析結果並未顯示任何不穩定的挫曲現象。最大與最小主應變數值方面,各構型皆明顯遜於PRSEUS。且當有嚴重脫膠發生時,此三設計樣的損毀容忍度皆應屬不足。若結構設計重點在於壓力和隔框方向剛性與強度,縱樑方向損毀容忍度非關鍵時,構型一為可能方案。但如需考量到損毀容忍度,則構型二較有可能勝任。例如:構型一和二可能適用於一體成型大面積輕量之運輸機地板。

    This thesis addresses three MSPT (Membrane-Stiffened Panel Technology) structural designs, in which fiber-reinforced composite sandwich panels and frames can be integrally fabricated using the stitching technique. The MSPT essentially utilizes various sandwich constructions where there is a reinforcing curved thin shell, e.g., curved composite laminate. The three MSPT designs were carried out meticulously so that they have the same weight as a PRSEUS (Pultruded Rod Stitched Efficient Unitized Structure) panel developed by Boeing and NASA. The finite element analysis software ABAQUS was used for linear buckling analyses and nonlinear analyses of the PRSEUS panel and three pristine MSPT designs. Each MSPT design with severe disbonding between composite laminates and foam cores of sandwich construction was also numerically investigated. The results of the linear buckling analyses indicate that the MSPT designs are overwhelmingly stronger than the PRSEUS in the frame direction, and also excel in the stringer direction. In the nonlinear analyses, MSPT designs I and II excel PRSEUS in stiffness against pressure loading. All the MSPT designs show nonlinear deflection responses to the loading in the stringer direction before the applied loads reach the respective linear buckling strengths, although all the deflections are stable. In contrast, the PRSEUS behaves linearly before the applied load reaches the linear buckling strength. From the computed maximum and minimum principal strains, it can be inferred that PRSEUS has higher ultimate strengths than any MSPT design. In the presence of severe disbonds, none of the MSPT designs has adequate residual strength. Therefore, designs I and II may be suitable design candidates if the structural design is driven by stiffness or strength against pressure loading or loading in the frame direction, and if damage tolerance is not a concern. Design II is the best choice from the three if there is a minor damage tolerance concern. For example, designs I and II may be suitable for integrally fabricated large lightweight floors for air transports.

    中文摘要 I Abstract II 致謝 VI 目錄 VII 表目錄 X 圖目錄 XI 第一章 研究背景與動機 1 1-1 研究背景 1 1-2 研究動機 4 第二章 研究目的與方法 6 2-1 研究目的 6 2-2 研究方法 6 第三章 PRSEUS之線性挫曲分析 10 3-1 PRSEUS概述 10 3-2 PRSEUS模型設定 11 3-3 PRSEUS線性挫曲分析結果探討 20 第四章 構型一之線性挫曲分析 23 4-1 構型一概述 23 4-2 構型一模型設定 24 4-3 構型一線性挫曲分析結果探討 28 第五章 構型二之線性挫曲分析 31 5-1 構型二概述 31 5-2 構型二模型設定 32 5-3 構型二線性挫曲分析結果探討 37 第六章 構型三之線性挫曲分析 40 6-1 構型三概述 40 6-2 構型三模型設定 41 6-3 構型三線性挫曲分析結果探討 45 第七章 PRSEUS之非線性靜力分析 48 7-1 PRSEUS模型設定 48 7-2 PRSEUS非線性分析結果探討 49 第八章 構型一之非線性靜力分析 52 8-1 構型一模型設定 52 8-2 構型一非線性分析結果探討 53 第九章 構型二之非線性靜力分析 55 9-1 構型二模型設定 55 9-2 構型二非線性分析結果探討 56 第十章 構型三之非線性靜力分析 58 10-1 構型三模型設定 58 10-2 構型三非線性分析結果探討 59 第十一章 構型一之複材脫層非線性分析 61 11-1 構型一複材脫層模型設定 61 11-2 構型一複材脫層非線性靜力分析結果探討 65 11-3 構型一複材脫層模型設定(動力分析) 67 11-4 構型一複材脫層非線性動力分析結果探討 69 第十二章 構型二之複材脫層非線性分析 72 12-1 構型二複材脫層模型設定 72 12-2 構型二複材脫層非線性分析結果探討 75 第十三章 構型三之複材脫層非線性分析 78 13-1 構型三複材脫層模型設定 78 13-2 構型三複材脫層非線性分析結果探討 82 第十四章 結語 85 第十五章 參考文獻 90

    [ 1 ] Dawn C. Jegley, Alexander Velicki,“Development of the PRSEUS Multi-Bay Pressure Box for a Hybrid Wing Body Vehicle,”56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Kissimmee, Florida, January 5-9 , AIAA 2015-1871, 2015.

    [ 2 ] Andrew E. Lovejoy, Frank A. Leone Jr.,“Tension and Bending Testing of an Integral T-cap for Stitched Composite Airframe Joints,”57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, San Diego, California, USA, January 4-8, AIAA 2016-2180, 2016.

    [ 3 ] Dawn C. Jegley, Marshall Rouse, Adam Przekop, Andrew E. Lovejoy,“The Behavior of a Stitched Composite Large-Scale Multi-Bay Pressure Box,”NASA/TM−2016-218972, NASA Langley Research Center, Hampton, VA, 2016.

    [ 4 ] Dawn Jegley, Adam Przekop, Marshall Rouse, Andrew Lovejoy, Alex Velicki, Kim Linton, Hsi-Yung Wu, Jaime Baraja, Patrick Thrash, Krishna Hoffman,“Development of Stitched Composite Structure for Advanced Aircraft ,”Proceedings of the American Society for Composites 30th TechnicalConference, Paper 1840, East Lansing, MI, September, 2015.

    [ 5 ] Kim A. Linton, Alexander Velicki, Krishna Hoffman, Patrick Thrash, Robert Pickell, Robert Turley,“ PRSEUS Panel Fabrication Final Report,”NASA/CR-2014-218149, The Boeing Company, Huntington Beach, California, 2014.

    [ 6 ] Nicolette Yovanof, Dawn Jegley.,“Compressive Behavior of Frame-Stiffened Composite Panels,” 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Denver, Colorado, April 04-07, AIAA 2011-1913, 2011.

    [ 7 ] Andrew E. Lovejoy, Marshall Rouse, Kim A. Linton, Victor P. Li,“Pressure Testing of a Minimum Gauge PRSEUS Panel,”52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Denver, Colorado, April 04-07, AIAA 2011-1813, 2011.

    [ 8 ] MatWeb, https://www.matweb.com

    [ 9 ] ABAQUS SIMULIA User Assistance 2020, Dassault Systems

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE