簡易檢索 / 詳目顯示

研究生: 劉立熙
Liu, Li-Shi
論文名稱: 根據實驗溫度量測值估算矩形鰭片上之熱傳特性
Estimation of Heat Transfer Characteristics on Rectangular Fin using Experimental Temperature Data
指導教授: 陳寒濤
Chen, Han-Taw
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 116
中文關鍵詞: 鰭片間距平均熱傳係數矩形鰭片強制對流
外文關鍵詞: forced convection, fin spacing, rectangular fin, average convection heat transfer coefficient
相關次數: 點閱:195下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文乃以有限差分法(Finite difference method)並配合最小平方法(Least-squares scheme)及溫度量測值來估算矩形鰭片上之平均熱傳係數(Average heat transfer coefficient)、總熱傳量(Total heat transfer rate)和鰭片效率(Fin efficiency)。鰭片上的熱傳係數是不均勻的。為了利用鰭片上的溫度量測值來預測鰭片上之熱傳係數,因此將鰭片分割成數個小區域,並假設每個區域上的熱傳係數為常數。結果顯示,於自然對流(Free convection)之條件下,平均熱傳係數會隨著鰭片間距增加而提高,卻隨鰭片高度增加而減小。而在強制對流 (Forced convection) 之條件下,迎風面的熱傳係數會大於背風面的熱傳係數。於相同風速之條件下,平均熱傳係數會隨著鰭片間距增加而減小並趨近於單一鰭片之值。本文所估算之平均熱傳係數與相關文獻之經驗公式相比較,已驗證本文逆算法之準確性及經驗公式之合理性。

    The present study applies the finite-difference method in conjunction with the least-squares scheme and measured temperatures to estimate the average convection heat transfer coefficient, total heat transfer rate, and fin efficiency on a vertical rectangular fin. The heat transfer coefficient on this rectangular fin is non-uniform. Thus the whole plate fin is divided into several sub-fin regions in order to predict the average heat transfer coefficient. The heat transfer coefficient on those sub-fin regions is assumed to be constant. The results show that the average heat transfer coefficient increases with increasing the fin spacing and decreases with increasing the fin height in free convection. The heat transfer coefficient on the upstream region of the fin can be markedly higher than that on the downstream region in forced convection. The average heat transfer coefficient decreases with increasing the fin spacing for a fixed air speed. However, this value approaches its corresponding asymptotical value obtained from a single fin as . In order to evidence the accuracy of the present inverse scheme and the reliability of some experimental formulas, a comparison of the average heat transfer coefficient between the present predicated results and those obtained from correlation recommended by current textbook is made.

    中文摘要…………………………………………………………… Ⅰ 英文摘要………………………………………………………… Ⅱ 目錄……………………………………………………………… Ⅲ 表目錄……………………………………………………………… Ⅵ 圖目錄……………………………………………………………… Ⅷ 符號說明…………………………………………………………… XV 第一章 緒論……………………………………………………… 1 1-1研究背景…………………………………………… 1 1-2 文獻回顧…………………………………………… 3 1-3 研究目地…………………………………………… 4 1-4 研究重點與本文架構……………….………………… 5 第二章 理論分析……………………………….………………… 7 2-1 簡介…………………………….…………………. 7 2-2 數學模式的建立……………………………..…… 8 2-2-1 數值分析方法……………….………………… 9 2-2-2 逆向熱傳導問題……………………………. 12 2-3 結果與討論…………………….…………………… 15 2-4 結論…………………………….…………………… 17 第三章 自然對流之實驗操作與數據分析……………………… 22 3-1 簡介…………………………….…………………. 22 3-2 實驗設備……………………..…………………… 22 3-3 實驗步驟…….……………….…………………… 25 3-4 實驗組別..…………………….…………………… 27 3-5 實驗結果與數據分析..……….…………………… 27 第四章 強制對流之實驗操作與數據分析……………………… 61 4-1 簡介…………………………….…………………. 61 4-2 實驗設備……………………..…………………… 61 4-3 實驗步驟…….……………….…………………… 62 4-4 實驗組別..…………………….…………………… 64 4-5 實驗結果與數據分析..……….…………………… 64 第五章 綜合結論與未來展望…………………………………… 108 5-1 數值模擬結果….……………….…………………… 108 5-2 實驗結果..…………………….…………………… 108 5-3 綜合討論..…………………….…………………… 109 5-4 未來發展與建議.……………….…………………… 110 參考文獻…………………………………………………………… 111

    [1] D.R. Haper and W.B. Brown, “Mathematical equations for heat conduction in the fins of air cooled engines,” N. A. C. A. Rept, pp. 158, 1922.

    [2] T.E. Schmidt, “Heat transfer calculations for extended surfaces, ” Refrigerating Engineering, pp. 351-3570, 1949.

    [3] W. Elenbaas, “Heat Dissipation of Parallel Plates by Free Convection,” Physica, Vol.IX, No.1, pp. 2-28, 1942.

    [4] E.M. Sparrow, P.A. Bahrani, “Experiments on Natural Convection from Vertical Parallel Plates with Either Open or Closed Edges,” ASME J. Heat Transfer, Vol. 102, pp. 221-227, 1980.

    [5] J.V. Beck, “ Calculation of surface heat flux from an integral temperature history, ASME J. Heat Transfer, ” Vol. 62, pp. 46-51, 1962.

    [6] E.M. Sparrow, A. Haji-Sheikh and T.S. Lundgern, “ The inverse problem in transient heat conduction, ” J. Appl. Mech., Vol. 86, pp. 369-375, 1964.

    [7] J.V. Beck, “Surface heat flux determination using an integral method,” Nucl. Eng. Des., Vol. 7, pp. 170-178, 1968.

    [8] Alnajem, N. M., and zisik, M. N., “A direct analytical approach for solving linear inverse heat conduction problems,” ASME J. Heat Transfer, Vol. 107, pp. 700-703, 1985.

    [9] J.V. Beck, Litkouhi B., and St. Clair C. R., “Efficient sequential solution of nonlinear inverse heat conduction problem,” Numer. Heat Transfer, Vol. 5, pp. 275-286, 1982.

    [10] S. Ostrach, “Laminar natural-convection flow and heat transfer of fluids with and without heat sources in channels with constant wall temperatures, ” NACA Tech. Note 2863, 1952.

    [11] J.R. Bodoia and J.F. Osterle, “The development of free convection between heated vertical plates, ” ASME J. Heat Transfer, vol. 84, pp. 40-44, 1962.

    [12] H.N. McManus and K.E. Starner, “An experimental investigation of free-convection heat transfer from rectangular-fin arrays, ” ASME J. Heat Transfer, pp. 273-277, 1963.

    [13] H.N. McManus and F. Harahap , “Natural convection heat transfer from horizontal rectangular fin arrays, ” ASME J. Heat Transfer, pp. 34-37, 1967.

    [14] C.D. Jones and L.F. Smith, “Optimun arrangement of rectangular fins on horizontal surfaces for free-convection heat transfer, ” ASME J. Heat Transfer, pp. 6-10, 1970.

    [15] S. Sunil, J. R. N. Reddy, C. B. Sobhan , “Natural convection heat transfer from a thin rectangular fin with a line sourse at the base – a finite difference solution, ” Heat and Mass Transfer vol. 31, pp. 127-135, 1996.

    [16] E. Velayati and M. Yaghoubi, “ Numerical study of convection heat transfer from an array of parallel bluff plates, ” Int. J. Heat Fluid Flow vol. 26, pp. 80-91, 2005.

    [17] S.Naik, S. D. Probert, I. G. Bryden, “Heat transfer characteristics of shrouded longitudinal ribs in turbulent forced convection, ” Int. J. Heat Fluid Flow vol. 20, pp. 374-384, 1999.

    [18] J.Deans and J.Neale, “The Use of Effectiveness Concepts to Calculate the Thermal Resistance of Parallel Plate Heat Sinks, ”Heat Transfer Engineering vol. 27, pp. 56-67, 2006.

    [19] S. Lee, “Optimum Design and Selection of Heat Sinks, ” Proceedings of 11th IEEE Semi-Term Symposium, pp. 48-54, 1995.

    [20] 張文奎,散熱鰭片擴散熱阻之分析, 國立清華大學工程與系統科學研究所,碩士碩文, 2002.
    [21] 劉建佳,Pentium 4 散熱模組底板具凸起物之散熱性能研究, 國立台灣科技大學機械工程研究所,碩士論文,2002.

    [22] H.T. Chen , J.P. Song, and Y.T. Wang, “Prediction of heat transfer coefficient on the fin inside one-tube plate finned-tube heat exchangers,” Int. J. Heat and Mass Transfer, vol. 48, pp. 2697-2707, 2005.

    [23] H.T. Chen and J.C. Chou, “Investigation of natural-convection heat transfer coefficient form the vertical fin of finned-tube heat exchangers,” Int. J. Heat and Mass Transfer, vol. 49, pp. 3034-3044, 2006.

    [24] 王宏志,利用逆算法並配合溫度量測值預測結露時之平板鰭管式熱交換器的熱傳性質,國立成功大學機械工程所,碩士碩文, 2006.

    [25] Y.T. Lin, K.C. Hsu, Y.J. Chang, and C.C. Wang, “Performance of rectangular fin in wet conditions: visualization and wet fin eifficiency,” ASME, J. Heat Transfer, vol. 123, pp. 827-836, 2001.

    [26] F. Kreith and M.S. Bohn, “Principles of Heat Transfer, ” 5th ed., west Publishing Company,Chapter 5, pp. 349-350, 1993.

    [27] A. Bejan, “Heat Transfer,” John Wiley & Sons, Inc., New York, pp. 53-62, 1993.

    [28] F. E. M. Saboya and E. M. Sparrow, “Local and average heat transfer coefficients for one-row plate fin and tube heat exchanger configurations, ” ASME Journal of Heat Transfer, vol.96, pp.265-272, 1974.

    [29] F.P. Incropera and D.P. Dewitt, “Introduction to Heat Transfer,” 3rd ed., John Wiley & Sons, table1.1, pp. 8, 1996.

    [30] 劉永智,利用逆算法和實驗溫度量測值估算CPU上之散熱鰭片的熱傳係數, 國立成功大學機械工程所,碩士碩文, 2006.

    [31] G.D. Raithby and K.G.T. Hollands, “Natural Convection,” in Handbook of Heat Transfer Fundamentals, 2nd ed., W.M. Rohsenow, J.P. Hartnett and E.N. Ganic, eds, McGraw-Hill, New York, 1985.

    [32] D. Rakshit and C. Balaji, “Thermodynamic optimization of conjugate convection from a finned channel using genetic algorithms, ” Heat Mass Transfer vol. 41, pp. 535-544, 2005.

    [33] F. Harahap and E. Rudianto, “Measurements of steady-state heat dissipation from miniaturized horizontally-based straight rectangular fin arrays, ”Heat Mass Transfer vol. 41, pp. 280-288, 2005.

    [34] V. R. Rao and S. P. Venkateshan, “Experimental study of free convection and radiation in horizontal fin arrays, ” Int. J. Heat and Mass Transfer, vol. 39, pp. 779-789, 1996.

    [35] V. S. Arpaci, “Introduction to Heat Transfer, ” pp. 580, 1999.

    [36] K. Raznjevic, “ Handbook of Thermodynamic Tables and Charts, ” , McGraw-Hill , New York , 1976.

    [37] T. Igarashi and Y. Mayumi, “Fluid flow and heat transfer around a rectangular cylinder with small inclined angle (the case of a width/height ratio of a section of 5) , ” Int. J. Heat and Fluid Flow, vol. 22, pp. 279-286, 2001.

    下載圖示 校內:2009-08-08公開
    校外:2009-08-08公開
    QR CODE