| 研究生: |
曹惠玲 Tsao, Hui-Ling |
|---|---|
| 論文名稱: |
改質矽藻土對水中重金屬吸附特性
之研究 Adsorption of Heavy Metals on Surface Modified Diatomite |
| 指導教授: |
林財富
Lin, Tsair-Fuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 123 |
| 中文關鍵詞: | 矽藻土 、活化改質 、銅 、吸附 |
| 外文關鍵詞: | diatomite, copper, adsorption, surface modification |
| 相關次數: | 點閱:65 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
銅為金屬處理及半導體電子產業重要廢水成分,目前針對含銅廢水之處理方法以化學混凝沉澱法、離子交換法、薄膜處理、吸附、電解回收及蒸發回收這些方法為主,但這些方法大多設置成本與處理成本高。本研究擬開發使用成本較低之吸附劑,探討其吸附銅之可行性。研究中以工業級矽藻土為主要吸附劑,利用其多孔洞特性結構,以化學方式進行活化改質。活化改質之後針對產物做表面特性分析,包括掃描式電子顯微鏡、X光繞射、傅立葉轉換紅外線光譜、X光螢光分析、比表面積和孔徑分佈。由X光繞射儀(XRD)的鑑定可發現矽藻土主要是由結晶性的SiO2(Quartz)組成;而其主要元素為Si、O、Al、Fe。
改質矽藻土吸脫附銅實驗結果顯示,吸附平衡所需時間為48小時,脫附平衡為24小時。矽藻土對銅吸附平衡式均可用Freundlich及Langmuir等溫吸附線來描述。原始工業級矽藻土在pH = 5.5、銅初始濃度為20 mg/L的條件下具有飽和吸附量約10 mg/g;改質後工業級矽藻土在相同條件下,飽和吸附量達52 mg/g,脫附後再次進行吸附銅亦有40 mg/g以上之吸附量,顯示矽藻土改質活化後確實提升吸附量,具有放大實務化之價值。
Copper is an important pollutant in the wastewater of metal treatment and semi-conductor industries. Among the wastewater treatment processes, adsorption is a relatively inexpensive method for the removal of copper from wastewater. The aim of this research is to develop a low cost adsorbent for the application in the wastewater treatment.
Several diatomite were employed in this study as raw materials of adsorbent. After surface modification, the adsorbent was used in adsorption experiments of copper and other heavy metals in aqueous phase. The surface properties of virgin diatomite and modified diatomite were tested with scanning electronic microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), X-ray fluorescent analysis (XRF), specific surface area, and pore size distribution. Based on the analytical results, the adsorbent was relatively porous, the surface of diatomite was SiO2 (Quartz), and the major elements were silicon, oxygen, aluminum, and iron.
The adsorption experiments reflect that about 48 hours are needed for equilibrium to reach for the adsorption of copper onto the modified diatomite, and about 24 hours are needed for desorption. Both Langmuir and Freundlich isotherm equations are able to describe the adsorption capacity for the copper/modified diatomite systems. The adsorption capacity at pH = 5.5 and initial concentration = 10 mg/g of copper, was about 10 mg/g for virgin diatomite. After modification, the adsorption capacity increased by 5 times, and became 52 mg/g. After desorption and re-activation, the adsorption capacity for the modified diatomite still had 40 mg/g, indicting the potential of application in the wastewater treatment.
Al-Degs et al., “Sorption of lead on diatomite and manganese oxide modified diatomite”,Wat. Res.,2001.
Al-Ghouti et al.,“The removal of dey textile wastewater:a study of the physical characteristic and adsorption mechanisms of diatomaceous earth”,Journal of Environmental Management,2003.
Aytas et al, “Removal of uranium from aqueous solutions by diatomite (Kieselghur)”,Journal of Radioanalytical and Nuclear Chemistry,1999.
Bailey, S.E., Olin, T.J., Bricka, R.M. and Adrian, D.D.. “A review of potentially low-cost sorbents for heavy metals”,Water Research, 33(11),pp. 2469-2479 , 1999.
Chiarle S., M. Ratto and M. Rovatti, “Mercury Removal from Water by Ion Exchange Resins Adsorption ”, Water Research, Vol.34 ,No.11, pp.2971-2978 , 2000
Chris Kent.,” Basics of Toxicology”, John Wiley & Sons, Inc,1998.
Corlett, G., “Targeting Water Use for Chemical Mechanical Polishing”,Solid State Technology, pp.201-206,2000.
D. M. Ruthven, “Principles of Adsorption and Adsorption Process”, New York:Wiley, (1984).
FAO/WHO. ,”Evaluation of food additives” ,WHO technical report series, WHO,Geneva, No 462,1971.
Golden, J. H., Small, R., Pagan, L., Shang, C., and Ragavan, S.,“Evaluating and Treating CMP Wastewater”, Semiconductor International, pp.85-98,2000.
Han B.C., and Hung T.C.,”Green oyster caused by copper pollution on the Taiwan coast” ,Environmental Pollution, 65,pp. 347-362, 1994.
Hayes, K. F., and Leckie, J. O. “Modeling ionic strength effects on cation adsorption at hydrous oxide/solution interface,” J. Colloid Interface Sci.,115, pp.564-572 ,1987.
Hayes, K. F., Leckie, J. O., “Modeling Ionic Strength Effects on Anion Adsorption at Hydrous Oxide/Solution Interfaces”, J. Coll. Interf. Sci., 125, pp.717-726, 1988.
Kurama H. and T. Catalsarik, “ Removal of Zinc Cyanide from a Leach Solution by an Anionic Ion Exchange Resin ”, Desalination ,Vol. 129,pp 1- 6, 2000
Maag, B., Boning, D., and Voelker, B., “Assessing the Environmental Impact of Copper CMP”, Semiconductor International, http://www.semiconductor.net, 2000
Mesuere, K., and Fish, W. ,“Chromate and oxalate adsorption on goethite Surface complexation modeling of competitive adsorption,” Environ. Sci. Technol., 26, pp.2365-2370 ,1992.
Morrill, L. G., Mahilum, B. C., and Mohiuddin, S. H. “Sorption,degradation and persistence,” in Organic Compounds in Soil, Ann ArborSci. Publishers, Ann Arbor, Michigan ,1982.
National Research Council. Recommended dietary allowances, 10th ed, National academy press: Washington DC, pp. 174-224, 1995.
Packard VS. Human Milk abd Infant Formula. Academic Press, New York, pp.102-139, 1982.
Patterson, J.W., “Effect of carbonate ion on precipitation treatment of cadmium, copper, lead and zinc,” Proceeding 36th Annual Industrial Waste Conference, Purdue University, Purdue University, West Lafayette, Indiana, USA, pp. 579-602, 1981.
Posselt, H. S., Anderson, F. J., and Weber, W. J. J. “Cation sorption on colloidal hydrous manganese dioxide”, Environ. Sci. Technol.,2, pp.1087-1093 ,1968.
Rashed M.N. ,“Cadmium and lead levels in fish (Tilapia nilotica) tissues as biological indicator for lalce water pollution”, Jid8508350.68(1), pp.75-89 ,2001
Rosenzweig AC.,” Copper delivery by metallochaperone proteins”, Acc Chem Res. 34(2), pp.119-128,2001.
Simmer K., Ahmed S., Carlsson L. and Thompson RP. ,”Breast milk zinc and copper concentrations in Bangladesh”. Br J Nutr. 63(1), pp.91-96,1990
Swallow, K. C., Hume, D. N., and Morel, F. M. M. “Sorption of copper andlead by hydrous ferric oxides”, Environ. Sci. Technol., 14, pp.1326-1331,1988.
Toth, J., Adsorption :/theory, modeling, and analysis, Marcel Dekker, New York, 2002.
Turnlund JR., Wada L., King JC., Keyes WR. and Acord LL., “Copper absorptionin young men fed adequate and low zinc diets”, Biol Trace Elem Res. 17,pp. 31-41, 1988.
Turnlund JR. ,”Human whole-body copper metabolism”, Am J Clin Nutr. 67(5 Suppl), 960S-964S,1998.
William, W.N., Lisa A. C., Environmental Engineering Science, John Wiley& Sons, INC., USA, 2001.
王原璋,“表面改質矽藻土用於處理含砷廢水”,第二十九屆廢水處理技術研討會,2003。
羅良慧,”應用地理資訊系統於土壤鎘污染危害評估方法之研究”,國立中興大學碩士論文,1997。
賴進興, “氧化鐵覆膜濾砂吸附過濾水中銅離子之研究”,國立台灣大學環境工程研究所博士論文,1995。
陳維政、黃靖修,環境化學精要,九樺出版社, 1994。
張鳳君,矽藻土加工與應用,化學工業出版社,2005。
經濟部,「經濟部事業廢棄物再利用種類及管理方式」,95年3月24日公告。
林啟文,卲承宗,陳信源,侯松男,”MTBE 分解菌懸浮與附著生長系統之分解效率研究”,第二十五屆廢水處理研討會論文集,2001。
許嘉慧, “利用吸附濃縮野生菌株Acinetobacter redioresistens生產之鹼性脂肪”,國立成功大學化學工程研究所碩士論文,1999。
陳炳坤, “以鎳磷矽藻土觸媒氫化油脂之研究”,逢甲大學化學工程研究所碩士論文,1990。
陳健民,環境毒物學,新文京出版社,2000。
黃泰隆, “利用矽藻土及活性碳轉化碳化矽之研究”,國立成功大學曠冶及材料科學研究所碩士論文,1981。
姚正生, “以擔體鈰觸媒化環己酮之液相氧化反應”,國立成功大學化學工程研究所碩士論文,1990。
蕭世裕, “ 酯水解酵素固定於矽藻土”,國立成功大學化學研究所碩士論文,2001。
謝國鎔, “將廢棄矽藻土活化再生吸附巴拉刈”,嘉南藥理科技大學環境工程衛生研究所碩士論文,2002。
蔡永興、陳見財、張啟達、潘建成、朱昱學,“電鍍業減廢回收與污染防治”,經濟部工業局,台北,第59-90 頁,1997。
阮國棟,工業廢水處理技術-有害成分去除法,科技出版社,新竹,第24-30、54-68 頁,1989。
吳佳正、王元璋、林財富,“以活化改質矽藻土去除水中銅離子技術”,第三屆重金屬污泥減量/減容及資源化關鍵技術研討會,2005。
吳佳正,“吸附性過濾技術”,有害重金屬污泥減量、減容及資源化關鍵技術之開發與推廣三年計畫,經濟部學界科專,2005。