| 研究生: |
黃柏瑜 Huang, Po-Yu |
|---|---|
| 論文名稱: |
利用虛實整合及人機協作建構全自動化營建機器人之雛型系統 — 以噴漆施工作業之移動行為為例 Developing the Prototype System for Fully Automatic Construction Robots by the Cyber-Physical Environment and Human-Robot Collaboration: A Case Study of Movements for Spray-Painting Operations |
| 指導教授: |
馮重偉
Feng, Chung-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 人機協作 、資料蒐集 、建築資訊模型 、自動化機器人 、數位雙生 |
| 外文關鍵詞: | Human-robot Collaboration, data collection, Building Information Modeling, Adaptive Robotics, digital twins, Mixed-reality |
| 相關次數: | 點閱:109 下載:21 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討建築營造行業如何藉由引入人機協作流程及數位雙生平台,作為發展全自動化機器人的過渡階段,協助蒐集人工智慧所需的訓練資料,解決該領域缺乏足夠現場數據之問題。具體而言為確保預計開發之人機協作流程具自適應性和有效操控,本研究首先 解析協作機器人在建築營造工地中所需的位移規劃資訊和操控需求,深入探討建築工地的特殊需求、機器人與人類工人的協作方式以及環境因素。通過分析資訊所獲得的結論,應用於後續開發自適應機器人系統,使其能夠在建築工地中進行協作操作。目前建築資訊模型主要用於工程專案管理,其模型的詳細程度有限,且檔案格式難以直接轉譯至機器人系統,因此限制了建築資訊模型在機器人控制領域的應用範圍和功能。為了克服這些限制,本研究將提出 4D BIM(包含時間資訊的建築資訊模型)至機器人系統的資訊轉換方法,並利用這些資訊來輔助人機協作系統的運作,藉此提升建築資訊模型在機器人領域的應用價值,使其能夠更好地支持機器人的控制、規劃和決策。透過建構一個數位雙生的人機協作平台,創建虛實整合環境,提供更準確和全面的資料,使人類工人和協作機器人能夠實時互動、合作和共享資訊。利用平台將整合實際感測器數據和虛擬分身,提供虛實整合的資訊以實現混合實境應用中的交互功能。通過收集現實建築工地和數位雙生環境中的相關資料,以供未來研究訓練智能模組,使機器人在現地能更好地理解和應對不同的工地場景和情境,逐步取代目前仍須人工介入的部分,增強機器人的自動化施工能力,促進營建工地發展全自動化機器人之應用。研究的主要貢獻針對移動機器人在油漆工程移動任務中進行了混合實境人機協作的測試。成功整合了 4D BIM 和輔助規劃資訊,將工項進度規劃納入協作式移動機器人系統中。在油漆工程的施作過程中,協作人員可以通過混合實境頭戴式裝置直觀地規劃任務、監督執行結果和指導協作設備。試驗結果顯示,這個流程能夠滿足工程現場移動施作油漆工程的需求,成功實現了協作式機器人的移動任務。此外還提供了一種保存智能行為數據的方式,以供未來研究用於訓練和優化人工智能模 型,推動營建領域自動化和人工智慧應用的潛力。
This research aims to explore how the construction industry can utilize the introduction of Human-Robot Collaboration (HRC) processes and digital twin platforms as a transitional phase for developing fully automated robots. These initiatives assist in gathering the necessary training data for artificial intelligence and address the problem of insufficient on-site data in this field.To ensure effective control of HRC, this study analyzes planning and control requirements for robots in construction sites, considering specific needs, collaboration methods, and the environment. It proposes a method to convert 4D Building Information Modeling (BIM) into robot systems, enhancing their capabilities and supporting collaboration. A digital twin platform integrates real sensor data with virtual avatars, enabling real-time interaction between human workers and robots. By collecting data from construction sites and digital twins, the research aims to provide training data for intelligent modules that will be utilized in future studies. This process aims to enable robots to understand and adapt to different construction scenarios, gradually reducing the need for human intervention.The main contribution of the research focused on conducting mixed-reality (MR) tests for mobile robots performing painting tasks in HRC. It successfully integrated 4D BIM into the collaborative robot system, allowing intuitive task planning, supervision, and guidance through an MR device. The experiments showed that this approach meets on-site painting requirements and accomplishes mobile robot tasks. It also provides a method for preserving behavioral data for future AI research, promoting automation and AI applications in construction.
[1] “Arduino® MEGA 2560 Rev3.” (n.d.).
https://docs.arduino.cc/static/96714580213f243989e75d4c5d109744/A000067-datasheet.pdf>
[2] Asadi, E., Li, B., and Chen, I.-M. (2018). “Pictobot: A Cooperative Painting Robot for Interior Finishing of Industrial Developments”. IEEE Robotics & Automation Magazine, 25(2), 82-94.
[3] Bauer, W., Bender, M., Braun, M., Rally, P., and Scholtz, O. (2016). "Lightweight robots in manual assembly – best to start simply! Examining companies’ initial experiences with lightweight robots." FraunhoFer InstItute For IndustrIal engIneerIng Iao
[4] Choi, S. H., Park, K.-B., Roh, D. H., Lee, J. Y., Mohammed, M., Ghasemi, Y., and Jeong, H. (2022). “An integrated mixed reality system for safety-aware human-robot collaboration using deep learning and digital twin generation”. Robotics and Computer-Integrated Manufacturing, 73, 102258.
[5] “Dev_ROSUnityCoordinateSystemConversion · siemens/ros-sharp Wiki.” (n.d.).
<https://github.com/siemens/ros-sharp/wiki/Dev_ROSUnityCoordinateSystemConversion>
[6] “File:Mecanum wheel control principle.svg - Wikimedia Commons.” (n.d.).
<https://commons.wikimedia.org/wiki/File:Mecanum_wheel_control_principle.svg>
[7] Follini, C., Magnago, V., Freitag, K., Terzer, M., Marcher, C., Riedl, M., Giusti, A., and Matt, D. T. (2020). “BIM-Integrated Collaborative Robotics for Application in Building Construction and Maintenance”. Robotics, 10(1), 2.
[8] Fragapane, G., Ivanov, D., Peron, M., Sgarbossa, F., and Strandhagen, J. O. (2020). “Increasing flexibility and productivity in Industry 4.0 production networks with autonomous mobile robots and smart intralogistics”. Annals of Operations Research, 308(1), 125-143.
[9] Gan, X., Xiong, Z., Du, S., Wu, Z., Geng, X., Gao, Y., and Guo, Y. (2021). “Three-dimensional visualization of secondary system based on digital twin”. Journal of Physics: Conference Series, 1983(1), 012072.
[10] Hajjaj, S. S. H., and Sahari, K. (2017). “Bringing ROS to agriculture automation: Hardware abstraction of agriculture machinery”. International Journal of Applied Engineering Research, 12(3).
[11] “HoloLens 2 - 概述、功能和规格| Microsoft HoloLens.” (n.d.).
<https://www.microsoft.com/zh-cn/hololens/hardware>
[12] “Home · whitecatboard/Lua-RTOS-ESP32 Wiki · GitHub.” (n.d.).
<https://github.com/whitecatboard/Lua-RTOS-ESP32/wiki>
[13] Kim, K., and Peavy, M. (2022). “BIM-based semantic building world modeling for robot task planning and execution in built environments”. Automation in Construction, 138, 104247.
[14] Kim, S., Peavy, M., Huang, P.-C., and Kim, K. (2021). “Development of BIM-integrated construction robot task planning and simulation system”. Automation in Construction, 127, 103720.
[15] Kolbeinsson, A., Lagerstedt, E., and Lindblom, J. (2019). “Foundation for a classification of collaboration levels for human-robot cooperation in manufacturing”. Production & Manufacturing Research, 7(1), 448-471.
[16] “Level of Detail/Development in Revit Modelling - Acura BIM | BIM .” (n.d.).
<https://acurabim.com/level-of-detail-development-in-revit-modelling/>
[17] Liang, C.-J., McGee, W., Menassa, C. C., and Kamat, V. R. (2022). “Real-time state synchronization between physical construction robots and process-level digital twins”. Construction Robotics, 6(1), 57-73.
[18] Liu, C., Hamrick, J. B., Fisac, J. F., Dragan, A. D., Hedrick, J. K., Sastry, S. S., & Griffiths, T. L. (2018). "Goal Inference Improves Objective and Perceived Performance in Human-Robot Collaboration." ArXiv preprint arXiv:1802.01780
[19] Liu, X., Nan, L., Lin, Y., Han, J., Liu, J., and Ku, T. (2022). “Data and model hybrid-driven virtual reality robot operating system”. Frontiers in Energy Research, 10.
[20] Michalos, G., Makris, S., Tsarouchi, P., Guasch, T., Kontovrakis, D., and Chryssolouris, G. (2015). “Design Considerations for Safe Human-robot Collaborative Workplaces”. Procedia CIRP, 37, 248-253.
[21] Mourtzis, D., Angelopoulos, J., and Panopoulos, N. (2022). “Closed-Loop Robotic Arm Manipulation Based on Mixed Reality”. Applied Sciences, 12(6), 2972.
[22] “move_base - ROS Wiki.” (n.d.).
<http://wiki.ros.org/move_base>
[23] “MRTK2-Unity Developer Documentation - MRTK 2 | Microsoft Learn.” (n.d.).
<https://learn.microsoft.com/en-us/windows/mixed-reality/mrtk-unity/mrtk2/?view=mrtkunity-2022-05>
[24] Nguyen, T. L., Blight, A., Pickering, A., Jackson-Mills, G., Barber, A. R., Boyle, J. H., Richardson, R., Dogar, M., and Cohen, N. (2022). “Autonomous control for miniaturized mobile robots in unknown pipe networks”. Frontiers in Robotics and AI, 9.
[25] “Projektování technických zařízení budov v Informačním modelu .” (n.d.).
<https://www.casopisstavebnictvi.cz/clanky-projektovani-technickych-zarizeni-budov-v-informacnim-modelu-budov-bim.html>
[26] Schlette, C., and Roßmann, J. (2016). “Sampling-Based Floor Plan Analysis on BIMs”. Proceedings of the International Symposium on Automation and Robotics in Construction (IAARC), 28-35.
[27] Taheri, H., Qiao, B., and Ghaeminezhad, N. (2015). “Kinematic Model of a Four Mecanum Wheeled Mobile Robot”. International Journal of Computer Applications, 113(3), 6-9.
[28] “Tutorial: Create a C# ASP.NET Core web app in Visual Studio .” (n.d.).
<https://learn.microsoft.com/en-us/visualstudio/get-started/csharp/tutorial-aspnet-core?view=vs-2022>
[29] “TyBOT | The Rebar Tying Robot | by Advanced Construction Robotics.” (n.d.).
<https://www.constructionrobots.com/tybot>
[30] “y28.Revit Dynamo - Bridge 1 - example 28 - E-Bear.” (n.d.).
<https://engineerbear.com/y28-revit-dynamo-bridge1-28/>
中文文獻
[1] “佔據栅格地图(Occupancy Grid Map) - 知乎.” (n.d.).
<https://www.zhihu.com/column/p/21738718>
[2] 周詠鈞 (2021). “結合BIM與光達點雲建構符合業主需求之工程進度評量模式-以裝修工程為例”, 碩士論文, 國立成功大學土木工程學系研究所, 台南市,
[3] 蕭苡烜(2022). “結合建築資訊模型及混合實境建構室內油漆工程之人機協作系統” , 碩士論文, 國立成功大學土木工程學系研究所, 台南市,