簡易檢索 / 詳目顯示

研究生: 黃鈞蔚
Huang, Chun-Wei
論文名稱: 巨量機設備通訊系統之可適性混合媒體存取控制協定及單擊延遲方案
Adaptive Hybrid MAC Protocol with Novel MOB Backoff Scheme for Massive Machine-to-Machine Communications
指導教授: 張志文
Chang, Chih-Wen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 50
中文關鍵詞: 巨量機設備通訊系統媒體存取控制協定碰撞解決能源效率
外文關鍵詞: Machine-to-Machine (M2M) communications, media access control (MAC) protocol, collision resolution, energy efficiency
相關次數: 點閱:200下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文著重於巨量機設備通訊系統中,常見之封包過度碰撞問題。而本文中所提出單擊延遲方案之概念,主要為限制低電量設備所能競爭的次數,其目的為增加高電量設備成功獲得資料傳送之機率;除此之外,也助於延長低電量設備之生命週期。但是,限制競爭機會之機制可能會延宕資料流通的程序。因此,進一步提出可適性混合媒體存取控制協定來解決此燙手山芋,並使得資料吞吐量有所增長。不論是在排頭延遲、能源效率抑或是成功之設備數量……等各種不同之性能指標下,皆可藉由理論分析及模擬結果,來驗證我們所提出的方法較傳統之協定更為優越。

    This paper targets on solving the high collision problem in the massive machine-to-machine communications. The main idea is to restrict the allowable number of contention to the low-energy devices (LEDs) by using the proposed make-or-break (MOB) backoff scheme such that the high-energy devices (HEDs) can have higher probability to attain time slots for data transmissions. In this fashion, the lifetime of the LEDs can also be prolonged. However, the restriction mechanism may detain the data forwarding process. To solve this dilemma, the adaptive frame structure is proposed to boost the data throughput. The analytical as well as simulation results demonstrate that with a huge amount of machine type devices (MTDs), the proposed scheme can outperform the conventional counterpart in the aspects of the head-of-line delay, energy efficiency and accommodation of the MTDs.

    Chinese Abstract i English Abstract ii Acknowledgements iii Contents iv List of Tables vi List of Figures vii Glossary of Symbols viii Glossary of Acronyms x 1 Introduction 1 1.1 Problem Formulation and Solutions . . . . . . . . . . . . . . . . . . . . 1 1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Background and Literature Survey 4 2.1 Machine-to-Machine Communications . . . . . . . . . . . . . . . . . . . 4 2.2 Media Access Control (MAC) Layer . . . . . . . . . . . . . . . . . . . . 6 2.2.1 Contention-based MAC Protocols . . . . . . . . . . . . . . . . . 7 2.2.2 Contention-free MAC Protocols . . . . . . . . . . . . . . . . . . 11 2.2.3 Hybrid MAC Protocols . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3 System Model 18 3.1 Time Frame Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1.1 Notification Period (NP) . . . . . . . . . . . . . . . . . . . . . . 19 3.1.2 Contention Only Period (COP) . . . . . . . . . . . . . . . . . . 20 3.1.3 Announcement Period (AP) . . . . . . . . . . . . . . . . . . . . 20 3.1.4 Transmission Only Period (TOP) . . . . . . . . . . . . . . . . . 21 3.2 Maximization of Aggregate Throughput . . . . . . . . . . . . . . . . . 23 4 Adaptive Hybrid MAC Protocol with MOB Backoff Scheme 24 4.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2 Adaptive Hybrid MAC Protocol with MOB Backoff Scheme . . . . . . 25 4.3 Analysis of Head-of-Line Delay . . . . . . . . . . . . . . . . . . . . . . 27 5 Numerical and Simulation Results 28 5.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.2 Effect of The Number of Allowable Requesting Attempts ηth . . . . . . 31 5.3 Number of Winning MTDs . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.4 Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.5 Energy Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.6 Head-of-Line Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.7 The Respective Performance of LEDs and HEDs . . . . . . . . . . . . . 41 6 Conclusions and Future Works 43 6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 6.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Bibliography 45 Appendix A 48 Vita 50

    [1] A. S. Tanenbaum, Computer Networks (Fifth Edition). Pearson Education International, 2011.
    [2] Y. Liu, C. Yuen, J. Chen, and X. Cao, “A scalable hybrid MAC protocol for massive M2M networks,” in IEEE Wireless Communications and Networking Conference, Apr. 2013, pp. 250-255.
    [3] G. Wu, S. Talwar, K. Johnsson, N. Himayat, and K. D. Johnson, “M2M: From
    mobile to embedded internet,” IEEE Communications Magazine, vol. 49, no. 4,
    pp. 36-43, Apr. 2011.
    [4] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Context aware
    computing for the internet of things: A survey,” IEEE Communications Surveys
    and Tutorials, vol. 16, no. 1, pp. 414-454, Feb. 2014.
    [5] A. Rajandekar and B. Sikdar, “A survey of MAC layer issues and protocols for
    machine-to-machine communications,” IEEE Internet of Things Journal, vol. 2,
    no. 2, pp. 175-186, Apr. 2015.
    [6] H.-L. Truong and S. Dustdar, “Principles for engineering IoT cloud systems,”
    IEEE Cloud Computing, vol. 2, no. 2, pp. 68-76, Mar. 2015.
    [7] E. Welbourne, L. Battle, G. Cole, K. Gould, K. Rector, S. Raymer, M. Balazinska, and G. Borriello, “Building the internet of things using RFID: The RFID
    ecosystem experience,” IEEE Internet Computing, vol. 13, no. 3, pp. 48-55, May
    2009.
    [8] Y. Zhang, R. Yu, S. Xie, W. Yao, Y. Xiao, and M. Guizani, “Home M2M networks: Architecture, standards and QoS improvements," IEEE Communications
    Magazine, vol. 49, no. 4, pp. 44-52, Apr. 2011.
    [9] K. Saleem, A. Derhab, and J. Al-Muhtadi, “Low delay and secure M2M communication mechanism for eHealthcare," in IEEE International Conference on e-Health Networking, Applications and Services, Oct. 2014, pp. 105-110.
    [10] S. Peng, T. Xiaobin, Y. Jian, Y. Fei, W. Haifeng, Y. Kai, and B. Zhiyong, “An
    adaptive massive access management for M2M communications in smart grid,”
    in IEEE 24th International Symposium on Personal Indoor and Mobile Radio
    Communications, Sept. 2013, pp. 3408-3412.
    [11] Acer, Acer BYOC, http://www.acer.com/ac/zh/TW/content/byoc-home.
    [12] G. Developers, Weave, https://developers.google.com/weave/.
    [13] A. Developers, HomeKit, https://developer.apple.com/homekit/.
    [14] A. Aijaz and A. Aghvami, “A PRMA based MAC protocol for cognitive machine-to-machine communications,” in IEEE International Conference on Communications, Jun. 2013, pp. 2753-2758.
    [15] J. Kim, J. Lee, J. Kim, and J. Yun, “M2M service platforms: Survey, issues,
    and enabling technologies,” IEEE Communications Survey and Tutorials, vol. 16,
    no. 1, pp. 61-76, Feb. 2014.
    [16] I. Park, D. Kim, and D. Har, “MAC achieving low latency and energy efficiency in hierarchical M2M networks with clustered nodes,” IEEE Sensors Journal, vol. 15,
    no. 3, pp. 1657-1661, Mar. 2015.
    [17] F. Vazquez-Gallego, J.Alonso-Zarate, P. Tuset-Peiro, and L. Alonso, “Energy analysis of a contention tree-based access protocol for machine-to-machine networks
    with idle-to-saturation traffic transitions,” in IEEE International Conference on
    Communications, Jun. 2014, pp. 1094-1099.
    [18] F. Vazquez-Gallego, J.Alonso-Zarate, P. Tuset-Peiro, and L. Alonso, “Energy and delay analysis of contention resolution mechanisms for machine-to-machine networks based on low-power WiFi,” in IEEE International Conference
    on Communications, Jun. 2013, pp. 2236-2240.
    [19] T. Adame, A. Bel, B. Bellalta, J. Barcelo, and M. Oliver, “IEEE 802.11ah:
    The WiFi approach for M2M communications,” IEEE Wireless Communications,
    vol. 21, no. 6, pp. 144-152, Dec. 2014
    [20] C. W. Park, D. Hwang, and T.-J. Lee, “Enhancement of IEEE 802.11ah MAC
    for M2M communications,” IEEE Communications Letters, vol. 18, no. 7, pp. 1151-1154, Jul. 2014.
    [21] I. Rhee, A. Warrier, M. Aia, J. Min, and M. L. Sichitiu, “Z-MAC: A hybrid MAC for wireless sensors networks,” IEEE/ACM Transaction on Networking, vol. 16, no. 3, pp. 511-524, Jun. 2008.
    [22] S. Aust and R. V. Prasad, “IEEE 802.11ah: Advantages in standards and further
    challenges for sub 1 GHz Wi-Fi," in IEEE International Conference on Communications, Jun. 2012, pp. 6885-6889.
    [23] A. Hernandez, F. Vazquez-Gallego, L.Alonso, and J. Alonso-Zarate, “Performance evaluation of frame slotted-ALOHA with intra-frame and inter-frame successive interference cancellation,” in IEEE Global Communications Conference, Dec. 2015, pp. 1-6.
    [24] IEEE, “IEEE standard for air interface for broadband wireless access systems-amendment 1: Enhancements to support machine-to-machine applications," in
    IEEE Standard 802.16p-2012, 2012, pp. 1-82.
    [25] Y. Liu, C. Yuen, X. Cao, N. U. Hassan, and J. Chen, “Design of a scalable
    hybrid MAC protocol for heterogeneous M2M networks,” IEEE Internet of Things
    Journal, vol. 1, no. 1, pp. 99-111, Feb. 2014.

    下載圖示 校內:2021-07-01公開
    校外:2021-07-01公開
    QR CODE