簡易檢索 / 詳目顯示

研究生: 胡筆勝
Hu, Pi-Sheng
論文名稱: 基於電磁波引發透明的高效率光學波長轉換器
Highly Efficient Optical Wavelength Converter Based on Electromagnetically Induced Transparency
指導教授: 陳泳帆
Chen, Yong-Fan
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 59
中文關鍵詞: 電磁波引發透明反向四波混頻雙光子調變量子轉頻器
外文關鍵詞: ectromagnetically induced transparency, backward four-wave mixing, two-photon detuning, quantum frequency converter
相關次數: 點閱:108下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文研究基於電磁波引發透明機制的雙Λ型共振反向四波混頻系統,在光學密度為19的冷原子中,我們觀察到光波長從780奈米轉換到795奈米大約有66%的轉換效率。另外,我們也證實在雙Λ型的四波混頻系統中,可以利用雙光子調變補償相位不匹配。根據我們發展的理論模型,這種四波混頻系統在光學密度200及理想的條件下,可以達到96% 的轉換效率。這種波長轉換系統能夠實現接近100%的轉換效率,因此可以提供給全光學量子資訊處理,作為一種製備有效量子轉頻器的簡單方案。

    In this thesis, we study a highly efficient resonant backward four-wave mixing (FWM) scheme based on double-Λ electromagnetically induced transparency (EIT) system. A wavelength conversion from 780 to 795 nm with approximately 66% conversion efficiency (CE) is observed by using this backward FWM scheme at an optical density (OD) of 19 in cold rubidium atoms. Furthermore, we demonstrate that the phase mismatching can be compensated by adjusting two-photon detuning in this double-Λ FWM scheme. According to our theoretical model, the present scheme can achieve 96% CE using a medium with a large OD of 200 under ideal conditions. Such wavelength conversion scheme can achieve a near-unity CE, thus providing an easy method of implementing an efficient quantum frequency converter for all-optical quantum information processing.

    摘要 i 英文延伸摘要 ii 誌謝 viii 目錄 ix 表目錄 xi 圖目錄 xii 第1章 緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 第2章 基本理論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1 二能階系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 電磁波引發透明. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.1. 光偏移效應對電磁波引發透明的影響. . . . . . . . . . . . . . . 12 2.3 基於電磁波引發透明的四波混頻. . . . . . . . . . . . . . . . . . . . . . 14 2.3.1. 正向四波混頻. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.2. 反向四波混頻. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.3. 相位不匹配. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 第3章 實驗系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.1 冷原子系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.1.1. 銣原子. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.1.2. 真空系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.1.3. 磁光陷阱. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2 鎖頻系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3 電磁波引發透明系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.4 四波混頻系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.4.1. 計算相位不匹配. . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.4.2. 時序設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 第4章 結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.1 電磁波引發透明光譜與慢光效應. . . . . . . . . . . . . . . . . . . . . . 41 4.2 電磁波引發透明介質的光偏移效應. . . . . . . . . . . . . . . . . . . . . 45 4.3 反向四波混頻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 第5章 結論與展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

    [1] Michael G. Raymer and Kartik Srinivasan. Manipulating the color and shape of single
    photons. Physics Today, 65, 11:32, 2012.
    [2] Wolfgang Tittel Nicolas Gisin, Grégoire Ribordy and Hugo Zbinden. Quantum cryptography.
    Rev. Mod. Phys., 74, 145, 2002.
    [3] S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden. A
    photonic quantum information interface. Nature, 437(7055):116–120, 2005.
    [4] Prem Kumar. Quantum frequency conversion. Opt. Lett., 15(24):1476–1478, Dec 1990.
    [5] Fabian Steinlechner, N Hermosa, Valerio Pruneri, and Juan P. Torres. Frequency conversion
    of structured light. 6, 06 2015.
    [6] Serkan Ates, Imad Agha, Angelo Gulinatti, Ivan Rech, Matthew T. Rakher, Antonio
    Badolato, and Kartik Srinivasan. Two-photon interference using background-free quantum
    frequency conversion of single photons emitted by an inas quantum dot. Phys. Rev.
    Lett., 109:147405, Oct 2012.
    [7] H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic. Quantum frequency
    translation of single-photon states in a photonic crystal fiber. Phys. Rev. Lett.,
    105:093604, Aug 2010.
    [8] Alex S. Clark, Shayan Shahnia, Matthew J. Collins, Chunle Xiong, and Benjamin J.
    Eggleton. High-efficiency frequency conversion in the single-photon regime. Opt.
    Lett., 38(6):947–949, Mar 2013.
    [9] Hoonsoo Kang, Gessler Hernandez, and Yifu Zhu. Resonant four-wave mixing with
    slow light. Phys. Rev. A, 70:061804, Dec 2004.
    [10] Hoonsoo Kang, Gessler Hernandez, Jiepeng Zhang, and Yifu Zhu. Backward four-wave
    mixing in a four-level medium with electromagnetically induced transparency. J. Opt.
    Soc. Am. B, 23(4):718–722, Apr 2006.
    [11] Chang-Kai Chiu. Studies on eit-based four-wave mixing at low light levels. Master
    Thesis, NCKU, 2013.
    [12] Zi-Yu Liu, Jian-Ting Xiao, Jia-Kang Lin, Jun-Jie Wu, Jz-Yuan Juo, Chin-Yao Cheng,
    and Yong-Fan Chen. High-efficiency backward four-wave mixing by quantum interference.
    In Scientific Reports, 2017.
    [13] Jz-Yuan Juo, Jia-Kang Lin, Chin-Yao Cheng, Zi-Yu Liu, Ite A. Yu, and Yong-Fan
    Chen. Demonstration of spatial-light-modulation-based four-wave mixing in cold
    atoms. Phys. Rev. A, 97:053815, May 2018.
    [14] S. E. Harris, J. E. Field, and A. Imamoğlu. Nonlinear optical processes using electromagnetically
    induced transparency. Phys. Rev. Lett., 64:1107–1110, Mar 1990.
    58
    [15] C.J. Foot and D.P.C.J. Foot. Atomic Physics. Oxford Master Series in Physics. OUP
    Oxford, 2005.
    [16] Zi-Yu Liu, Yi-Hsin Chen, Yen-Chun Chen, Hsiang-Yu Lo, Pin-Ju Tsai, Ite A. Yu, Ying-
    Cheng Chen, and Yong-Fan Chen. Large cross-phase modulations at the few-photon
    level. Phys. Rev. Lett., 117:203601, Nov 2016.
    [17] Hoonsoo Kang, Gessler Hernandez, and Yifu Zhu. Nonlinear wave mixing with
    electromagnetically induced transparency in cold atoms. Journal of Modern Optics,
    52(16):2391–2399, 2005.
    [18] Steven Chu, L. Hollberg, J. E. Bjorkholm, Alex Cable, and A. Ashkin. Threedimensional
    viscous confinement and cooling of atoms by resonance radiation pressure.
    Phys. Rev. Lett., 55:48–51, Jul 1985.
    [19] Daniel Adam Steck. Rubidium 87 d line data. 01 2003.
    [20] Yu-Wei Cheng. Setup and optimization of rubidium magneto-optical trap. Master Thesis,
    NCKU, 1999.
    [21] Chen-Hsuan Fang. Studies on oscillation behavior of eit-based light storage and retrieval.
    Master Thesis, NCKU, 2013.
    [22] Jian-Ting Xiao. High-efficiency backward resonant four-wave mixing by quantum interference.
    Master Thesis, NCKU, 2017.
    [23] Jia-Kang Lin. High conversion efficiency based on spatial adiabatic condition of resonant
    four-wave mixing. Master Thesis, NCKU, 2015.
    [24] Wolfgang Ketterle, Kendall B. Davis, Michael A. Joffe, Alex Martin, and David E.
    Pritchard. High densities of cold atoms in a dark spontaneous-force optical trap. Phys.
    Rev. Lett., 70:2253–2256, Apr 1993.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE