簡易檢索 / 詳目顯示

研究生: 黃建中
huang, chien-chung
論文名稱: LiCF3SO3於有機溶劑中導電性之電腦模擬
Molecular Simulations of the conductivity for LiCF3SO3 in organic solvent
指導教授: 施良垣
Shy, Liang-Yuan
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 133
中文關鍵詞: 配位聚集導電性離子擴散鋰電解質
外文關鍵詞: conductivity, lithium salt, diffusion coefficient
相關次數: 點閱:81下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以分子動力模擬的方法研究鋰鹽LiCF3SO3於有機溶劑中之擴散、導電、配位、集結性質。研究之溶劑包括高介電常數之propylene carbonate(簡稱PC)和N,N-dimethylformamide(簡稱DMF),與低介電常數之tetrahydrofuran(簡稱THF)和dimethoxyethane(簡稱DME)。首先以均方位移圖求得擴散係數,並以Nernst-Einstein公式估計導電度。再以自由鋰離子出現之機率修正導電度值,並由徑向分佈函數計算鋰離子周圍之溶劑及陰離子總數。
    模擬所得之鋰離子、氟原子及溶劑之氫原子之擴散係數與NMR測量值頗為接近。此外,導電度之計算值也與實驗傾向一致。模擬結果顯示,高溫有利於離子對的形成,但溫度對於鋰離子周圍之溶劑配位數影響並不大。當溫度固定時,鋰鹽濃度高有利於離子對的形成,但不利於鋰離子與溶劑之配位。鋰離子周圍第一殼層之溶劑配位數,與溶劑之介電常數及donor number(簡稱DN)有關。當溶劑之介電常數接近時(如DME、THF),DN大者(如DME)具有較高之配位數。當溶劑相同時,鋰鹽之陰離子之體積愈大,其與鋰離子結合之傾向愈明顯,這使得鋰離子周遭之溶劑配位數降低。

    Molecular dynamics simulation have been used to study the diffusivity,
    conductivity, coordination and association properties for LiCF3SO3 in high
    dielectric constant solvents of propylene carbonate (PC), and
    N,N-dimethylformamide (DMF), and low ones of tetrahydrofuran (THF), and
    dimethoxyethane (DME). The diffusion coefficients were computed firstly
    from the plot of the mean-square displacement to estimate the specific
    conductivities. The computed values were then revised with the probability
    of free lithium ion. The average numbers of solvent and anion around the
    lithium ion were computed from the radial distribution functions.
    The simulated diffusion coefficients of Li+ and F and H atoms agree with
    the NMR measurements. In addition, the computed specific conductivities
    had the same trend with experimental results. It was shown that the high
    temperature favored the formation of ion pairs, but the solvent coordination
    number around Li+ was insensitive to temperature variation. At a constant
    temperature, the high salt concentration facilitated the ion pair formation, but
    unfavored the solvent coordination. The solvation number for Li+ depended
    on the dielectric constant and donor number (DN) of solvents. For comparable
    dielectric constants (e.g. DME, THF), solvent with larger DN (e.g. DME)
    leaded to higher solvation number. With the same solvent, the more sizeable
    the anion was, the proner to associate with Li+ was, leading to low salvation
    number around Li+.

    中文摘要……………………………………………………………………Ⅰ 英文摘要……………………………………………………………………Ⅱ 本文目錄……………………………………………………………………Ⅲ 圖目錄………………………………………………………………………Ⅳ 表目錄………………………………………………………………………Ⅶ 第一章 序論………………………………………………………………1 第二章 電腦模擬…………………………………………………………5 2-1 分子動力模擬原理………………………………………………5 2-2 力場………………………………………………………………6 2-3 模擬條件…………………………………………………………9 2-4 相關數據的計算…………………………………………………10 第三章 結果與討論………………………………………………………14 3-1 徑向分佈函數的分析……………………………………………14 3-1-1 溫度之改變對LiCF3SO3/DMF系統徑向分佈函數之影響………15 3-1-2 濃度之改變對系統中徑向分佈函數之影響……………………16 3-1-3 配位機率的分析…………………………………………………52 3-2 擴散係數與導電度的關係………………………………………62 3-3 離子群聚的分析…………………………………………………73 3-4 溶液黏度的計算…………………………………………………80 第四章 結論………………………………………………………………82 附錄A……………………………………………………………………… 84 附錄B………………………………………………………………………116 附錄C………………………………………………………………………121 附錄D………………………………………………………………………127 參考文獻………………………………………………………………… 131

    [1] L. Doucey, M. Revault, A. Lautie, A. Chausse, and R. Messina, elrctrochimica Acta 1999, 44, 2371.
    [2] J. C. Soetons, C. Millot, and B. Maigret, J. Phys. Chem. 1998, 102, 1055.
    [3] 陳晏銜,碩士論文,過氯酸鋰在乙二醇碳酸酯/碳酸丙烯混合溶液中導電性之電腦模擬,國立成功大學,2001.
    [4]王俊傑,碩士論文,六氟砷酸鋰於有機溶劑中導電性之電腦模擬,國立成功大學,2000.
    [5]陳輝龍,碩士論文,四氟硼酸鋰於混合有機溶劑中導電性之電腦模擬,國立成功大學,2001.
    [6]林文信,碩士論文,六氟磷酸鋰於混合有機溶劑中導電性之電腦模擬,國立成功大學,2000.
    [7]A. M. Andersson, M. Herstedt, A. G. Bishop, and K. Edstrom, Electrochimica Acta, 2002, 47, 1885.
    [8] M. J. Williamson, J. P. Southall, H. V. St. A. Hubbard, G. R. Davies, and I. M. Ward, Polymer 1999, 40, 3945.
    [9] Y. Saito, H. Yamamoto, H. Kageyama, and O. Nakamura, J. Mater. Sci. 2000, 35, 809.
    [10] M. Jose, and G. M. Howell, Vibrational Spectroscopy 2000, 24, 185.
    [11] D. N. Theodorou, and U. W. Suter, Macromolecules 1985, 18, 1206.
    [12] J. N. Baskir, and U. W. Suter, Macromolecules 1988, 21, 1877.
    [13] Discover user guide Part 1, Biosym/MSI Technologies 1996, V4.0.
    [14] M. Ratner. “Polymer electrolyte Reviews-1”, Elserier Applied Science, London 1987, P.173.
    [15] B. H. Zimm, J. Chem. Phys. 1953, 21, 934.
    [16] B. H. Zimm, and J. L. Lundberg, J. Phys. Chem. 1956, 60, 425.
    [17] J. L. Lundberg, J. Macromol. Sci. 1969, B3, 693.
    [18] J. L. Haile, “Molecular Dynamics Simulation”, New York 1992, P.293.
    [19] P. S. S. V. Prabhu, T. P. Kumar, P. N. N. Nammoodiri, and R. Gangadharan, J. Appl. Electrochem. 1993, 23, 151.
    [20] R. H. Fuoss, J. Am. Chem. Soc. 1935, 57, 2604.
    [21] M. Chalaris, and J. Samios, J. Molecul. Liq. 1998, 78, 201.
    [22] L. D. Pettit, and S. Bruckenstein, J. Am. Chem. Soc. 1966, 88, 4783.
    [23]L. van Dam, AP. Lyubartsev, A. Laaksonen, and L. Nordenskiold,
    J. Phys. Chem. B. 1998, 102, 10636.
    [24]E. Kucukpinar, and P. Doruker, Polymer 2003, 44, 3607.
    [25]M. L. T. Asaki, A. Redondo, T. A. Zawodzinski, and A. J. Taylor,
    J. Chem. Phys. 2002, 116, 10377.
    [26]M. Andrea, P. Carlo, T. Mara, T. Lorenzo, and T. Gluseppe,
    J CHEM ENG DATA. 1991, 36, 365.

    下載圖示 校內:立即公開
    校外:2003-08-21公開
    QR CODE