簡易檢索 / 詳目顯示

研究生: 鄧宗翔
Teng, Tsung-Hsiang
論文名稱: 陸上風力發電機基礎振動勁度之量測與分析
Vibration Stiffness Monitoring and Analysis of On-shore Wind Turbine Foundation
指導教授: 倪勝火
Ni, Sheng-Huoo
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 119
中文關鍵詞: 風力發電機基礎勁度監測
外文關鍵詞: Wind Turbine, rotational stiffness, foundation, monitoring
相關次數: 點閱:81下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 風力發電機損壞的因素主要有兩項,其一是來自風機廠商對風機基礎樁帽的旋轉勁度或旋轉角度的規範,第二則是要符合“建築物基礎構造設計規範”中對基礎變形與設計支承力的要求。
    風力發電機在運轉期間會受到風力或是地震力的作用,因此基礎不斷受到反覆載重的作用,久而久之會造成基礎旋轉勁度衰減進而使得風力發電機基礎旋轉角度提高,風機則會不時地煞起或是停機使得營運成本提高,此時則須評估風機是否能夠繼續延壽運轉或是要終止其運作。本研究在彰化西濱工業區的岸上風力發電機內部架設加速度計、動態位移計、傾度儀與應變計,藉此分析風力發電機塔底基礎受風力等反覆載重之下,基礎的扭轉角、傾角、位移與彎矩,並藉由上述資料回歸分析得到風力發電機的旋轉勁度,藉由量測到的旋轉進度作為評估基礎是否有衰減的指標。
    經現場量測結果分析顯示: Y方向旋轉勁度約為46.4 GN-m/radian; Z方向旋轉勁度約為35.9 GN-m/radian;整體合併勁度約為55.3 GN-m/radian,相關係數R值約為0.78,傾角與彎矩相關程度尚好。

    The requirement of energy is getting greater due to the rapid development of industries all over the world. Renewable energy must be the solution for oil runout. Taiwan has the excellent wind firms in not only on-shore but off-shore. However, the wind turbine foundation will deteriorate with the passing of time which leads to additional deflection.

    This study consists two parts. The first part measure the deflections of on-shore wind turbine foundation by field instrumentation. The sensors consist of accelerometer, displacement meter, tilt meter and strain gauge. The sampling frequency is set to 64 Hz with immediate monitoring. The technique uses baseline correction and band filter to integrate acceleration twice to obtain low frequency displacement (under 0.5 Hz) and regression analysis to gain rotational stiffness.

    According to the measuring results, the wind turbine foundation displacement satisfies the local building code. The total rotational stiffness is 55.3GN-m/radian, and correlation coefficient is 0.78.

    摘要 I 目錄 VIII 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 研究目的及方法 2 1.3 研究內容 2 第二章 文獻回顧 5 2.1 前言 5 2.2風力發電機基礎安全與變形需求 5 2.3基座振動量測勁度分析 7 2.4風力發電機文獻回顧 9 2.5 其他相關文獻回顧 12 第三章 相關理論 15 3.1 訊號處理 15 3.2 濾波器的效用與種類 16 3.2.1濾波器分類依照訊號通過情形 17 3.2.2常見無線脈衝響應濾波器 21 3.3快速傅立葉轉換 22 3.3.1傅立葉函數類型 22 3.3.2快速傅立葉轉換假設與限制 24 3.4 基線修正 25 3.5基座建模與分析方法 26 3.5.1地基反力法 26 3.5.2 p-y曲線分析法 29 第四章 風力發電機基座振動之安裝量測 35 4.1 前言 35 4.2現地量測儀器介紹 36 4.3量測儀器安裝 40 第五章 風力發電機基座振動量測結果分析與討論 43 5.1前言 43 5.2量測訊號處理 43 5.2.1分析之基本參數 43 5.2.2程式分析原理 44 5.3基礎短歷時分析 46 5.3.1基礎傾角短歷時分析 46 5.3.2基礎彎矩短歷時分析(傾度儀) 47 5.3.3基礎彎矩短歷時分析(加速度計) 50 5.4 基礎轉角量測 54 5.4.1 X方向轉角(degree) θx 56 5.4.2 Z方向傾角(degree) φz 57 5.4.3 Y方向傾角(degree) φy 63 5.4.4雙軸傾度移與加速度計傾角比較 68 5.5基礎位移量測 72 5.6基礎彎矩量測 82 5.6.1 應變轉成彎矩計算 82 5.6.2 應變計電壓量測 84 5.6.3基礎彎矩分析 90 5.7風力發電機旋轉勁度計算 93 第六章 風力發電機GROUP PILE程式模擬 97 6.1基座基礎型式 97 6.2 GROUP PILE程式分析 101 6.3 基座建模分析結果 104 第七章 結論與建議 109 7.1結論 109 7.2建議 111 參考文獻 113 附錄、風力發電機振動資料儲存與分析 119

    參考文獻
    王伯凱(2016),「p-y曲線應用於離岸風機基樁循環載重之研究」,碩士論文,國立成功大學土木工程研究所。
    中華民國內政部營建署(2001),建築物基礎結構設計規範/建築物耐震設計規範及解說,台北。
    何祖皓(2016),「不同加速度計歷時校正方法之比較研究」,碩士論文,國立台北科技大學土木工程研究所。
    邱建智(2012),「監測自動化系統C程式之建立」,碩士論文,國立成功大學土木研究所。
    林啟聖(2012),「震盪水柱波浪發電防波堤之波浪作用力分析」,碩士論文,國立成功大學水利與海洋工程學系研究所。
    周庭旭(2012),「數位濾波器應用於土石流地聲訊號分析之研究」,碩士論文,國立成功大學水利與海洋工程學系研究所。
    倪勝火,范仲軒,馮宗緯(2015),「以p-y曲線運用於基樁在可液化海床砂質土壤之行為分析」,第十六屆大地工程學術研討會論文集,高雄。
    倪勝火,莊方慈,黃鐘,鄭錦榮,鍾秋峰,陳瑞麟,郭濬瑜(2018),「風力發電機塔柱基礎振動之監測與分析」,第14屆破壞年會論文全文。
    倪勝火,莊方慈,鄭錦榮,鄧宗翔(2019),「風力機塔柱基礎振動變位及勁度之量測與分析」,台電工程月刊論文全文。
    郭景琳(2004),「路竹南科土層振動衰減特性與阻尼比評估之試驗研究」,碩士論文,國立成功大學土木工程研究所。
    郭玉樹,蘇峰堅,曾韋禎,林啟聖(2012),「離岸風機大口徑單樁基礎支承結構自然震動頻率快速計算法」,第34屆海洋工程研討會論文集。
    郭濬瑜(2018),「岸上風力發電機基礎位移監測與衰減模式之量測分析」,碩士論文,國立成功大學土木研究所。
    蔡志賢(2004),「數值濾波器應用於波浪資料分析的探討」,碩士論文,國立台灣海洋大學河海工程所。
    廖楷瀚(2015),「2MW離岸式風力發電機塔架基礎之抗地震分析研究」,碩士論文,國立宜蘭大學綠色科技學程研究所。
    劉瑞弘(2009),「風力機結構負載與共振模態分析」,經濟部風力機設備產業技術開發計畫(98-D0107)。
    蘇峰堅,黃迪瑩(2012),「離岸風力發電機群樁基礎受側向載重 變形分析」,第17屆台灣區用戶大會。
    American Petroleum Institute. (2005). “Recommended practice for planning, designing, and constructing fixed offshore platforms.” API Report No. 2A-WSD, API, Houston.
    Brown, D.A., Reese, L.C., and O’Neill, M.W. (1987). “Behavior of a large scale pile group subjected to cyclic lateral loading.” Journal of Geotechnical Engineering, ASCE, Vol. 113, No. 11, pp. 1326-1343.
    Bhomik, S. and Long, J. (1991). “An Analytical Investigation of the Behavior of Laterally Loaded Piles,” Proceedings Geotechnical Engineering Congress, Vol. 2, ASCE, Pub. 27, pp. 1307-1318.
    Bolt, B.A. (1993). Earthquake and Geological Discovery, Scientific American Library, New York.
    Ewing, W.M., and Jardetzky, W.S. (1957). Elastic Waves in Layered Media, McGraw-Hill Book Co, New York, p. 380.
    Freudenreich, K. and Argyriadis, K. (2008). “Wind turbine load level based on extrapolation and simplified methods.” Wind Energy, Vol. 11, pp. 589-600.
    Gutowski, T.G., and Dym, C.L. (1976). “Propagation of ground vibration: A review.” Journal of Sound and Vibration, Vol. 49, No. 2, pp. 179-193.
    Garcia, C., and Gibert, O. (2014). “Experimental model parameters identification of an Alstom wind turbine in operation using strain gauge. comparison with numerical models.” The 21th International Congress on Second and Vibration, Beijing.
    Hassanzadeh, M. (2012) “Cracks in onshore wind power foundation.” Elforsk Rapport 11:56, Technical Report, Stockholm, Sweden.
    International Electrotechnical Commission. (2014). “Wind turbines–Part 1: Design Requirements.” IEC 61400-1.

    John, C.N. (2011) “Design of wind turbine tower and foundation system:optimization approach.” Iowa Research Online: Theses and Dissertations, University of Iowa.
    Kerciku, A.A., Battacharya S., Burd H.J., and Lubkowsky, Z.A. (2008). “Fixity of pile foundations in seismically liquefied soils for buckling calculations – an eigenvalue analysis.” Proceedings of the 14th World Conference in Earthquake Engineering, Beijing, China.
    Leu, T.S.,Yo, J.M., Tsai, Y.T., Miau, J.J., and Wang, T.C. (2014). “Assesment of IEC 61400-1 normal turbulence model for wind condition in Taiwan west coast areas. ”5th International Symposium of Fluid(IAPF5).
    Miller, G.F., and Pursey, H. (1955). “On the partition of energy between elastic waves in a semi-infinite solid.” Proc. Royal Society, A233, pp. 55-69.
    Matlock, H. (1970). “Correlation for design of laterally loaded piles in soft clay.” Proceedings 2nd Annual Offshore Technology Conference, Houston, Texas, Vol. 1, pp. 577-594.
    Meade, M.L., and Dillon, C.R. (1991). Signals and Systems, Chapman & Hall, London.
    Mcvay, M., Casper, R., and Shang, T. (1995). “Lateral response of three-row groups in loose to dense sands at 3D and 5D pile spacing.” Journal of Geotechnical Engineering, ASCE, Vol. 121, No. 5, pp. 436-441.
    Misiti, M., Misiti, Y., Oppenheim, G., and Poggi, J.M. (2015). Signal analysis toolbox: for use with MATLAB, MathWorks.
    Nyman, K.J. (1980). “Field load tests of instrumented drilled shafts in Coral limestone.” M.S. Thesis, The University of Texas at Austin.
    Ntambakwa, E., and Rogers, M. (2009). “Seismic forces for wind turbine foundations - wind turbine structures, dynamics, loads and control.” In Proceedings of the American Wind Energy Association Windpower Conference, Chicago, IL, US.
    Prabha, M., Dash, N., and Barrs, S. (2013). “ Site specific wind turbine foundation certification. ” The Eighth Asia-Pacific Conference on Wind Engineering, Chennai, India.
    Passon, P., and Branner, K. (2014). “Load calculation method for offshore wind turbine foundation. Ship and Offshore Structures, Vol. 9, No. 4, pp. 443-449.
    Reese, L.C., Cox, W.R., and Koop, F.D. (1974). “Analysis of laterally
    load piles in sand.” Proceedings of 5th Annual Offshore Technology Conference, Houston, Texas, Vol. II, pp. 473-485.
    Reese, L.C., and Welch, R.C. (1975). “Laterally loading of deep foundations in stiff clay.” Journal of the Geotechnical Engineering Division, ASCE, Vol. 101, No. GT7, pp. 633-649.
    Ruesta, P.F., and Townsend, F.C. (1997) “Evaluation of laterally loaded pile group at Roosevelt Bridge,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 123, No. 12, pp. 1261-1276.
    Rollins, K.M., Peterson, K.T., and Weaver, T.J. (1998). “Lateral load behavior of fullscale pile group in clay,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 124, No. 6, pp. 468-478.
    Satari, M.A., and Hussain, S. (2008) “Vibration based wind turbine tower foundation design utilizing soil-foundation-structure Interaction,” Proceedings of the 14th World Conference in Earthquake Engineering, Beijing, China.
    Sheng, J., and Chen, S. (2010) “Fatigue load simulation for foundation design of offshore wind turbines due to combined wind and wave loading.” Department of Civil Engineering University, Hangzhou, China.
    Theissen, J.R., and Wood, W.C. (1982). “Vibration in structures adjacent to pile driving.” Dames and Moore Engineering Bulletin, Number Sixty.
    Woods, R.D. (1968) “Screening of surface waves in soils.” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 94, No. 4, pp. 951-979.

    下載圖示
    2024-08-09公開
    QR CODE