簡易檢索 / 詳目顯示

研究生: 陳禹鈞
Chen, Yu-Chun
論文名稱: 以Fe、V改質光觸媒觸理1,2-二氯乙烷之研究
指導教授: 朱信
Chu, Hsin
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 149
中文關鍵詞: 改質光觸媒1, 2-二氯乙烷光分解溶膠凝膠法二氧化鈦
外文關鍵詞: photodegration, Titanium dioxide, doping, 1,2-dichloroethane
相關次數: 點閱:86下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本實驗為以自製光觸媒及添加Fe、V、Pd改質光觸媒處裡1,2-二氯乙烷,從TGA分析純TiO2的樣品中可以發現,自製純TiO2於30℃-170℃之間有一重大的重量損失,為H2O;198℃-378℃之間也有一重量損失,推測為NO3-的分解,及結晶水的分解,由吸放熱來看,並沒有明顯的變化,有可能是NO3-的放熱及結晶水的吸熱相互影響所造成,另外,500℃-570℃之放熱波鋒為無晶形的TiO2轉變成anatase,590℃-800℃的放熱波鋒則為anatase轉變為rulite所造成。

      由純TiO2及改質後之TiO2光觸媒處理1,2-二氯乙烷之轉化率分析中可發現,Fe:V:Ti=0.0005:0.0025:1%的最佳,為85%,其次是Fe/Ti=0.001%,為71%,V/Ti=0.01%則為64%,而商用光觸媒P-25則是57%,最差的為自製純TiO2光觸媒。在不同水氣濃度下自製TiO2光觸媒處理1,2-二氯乙烷之轉化率分析實驗時可以發現當水氣小於10%(相對溼度)時,轉化率都為100%,但隨著水氣的增加,轉化率逐漸下降,當水氣濃度為70%(相對溼度)時,轉化率已降為26.82%,因此推測水氣會跟我們所處理的污染物1,2-二氯乙烷產生競爭性吸附,所以隨著水氣濃度的升高,污染物的轉化率也降低。由Fe/Ti=0.001%的動力實驗可得知,1,2-二氯乙烷吸附常數Ki大於H2O吸附常數Kio,因此1,2-二氯乙烷吸附能力大於H2O吸附能力,但在我們的實驗中水氣的濃度大於1,2-二氯乙烷的濃度很多,所以水氣的變化對活性的影響相對很大。再者,可以發現隨著溫度的增加,吸附常數都是隨的減小,這是因為光觸媒的吸附為放熱反應,所以隨著溫度增加而減小,而由Arrhenius equation得反應之活化能Ea=139.58kJ/mole,碰撞因子A=3533.3。

     In this experiment , in order to improve the activity of the TiO2. We  doped  Fe , V and Pd into TiO2 to photodegrade1,2-dichloroethane.From the result of  TGA, there is  a great loss of weight between  30oC- 170oC. It may result from H2O. And from 198oC – 378oC  there is another loss of weight ,it supposes t he dissolution of NO3- and crystal water.   From exothermic and endothermic curve, we can find that there is no great change in the figure . It may result from the exothermic  and  endothermic  reaction of dissolution  of  NO3- and  crystal water. In addition, there is an  exothermic peak between 500oC- 570 oC. It results  from the change from to anatase, and the exothermic peak from 590oC-800oC should be the change of anatase to rulite.

     The  best  1,2-dichloroethane  photodegration performance  is  the  sample  of  Fe:V:Ti= 0.0005:0.005:1%. The performance is 85%.  The following are  Fe/Ti =0.001%, and V/Ti =0.01% . The performance of p-25 in the same situation is 57%. The photocatalytic performance  decreases with the H2O concentration increasing. It would presume that H2O may make contention with  1,2-dichloroethane.
      The experiment of  kinetic behavior of 1,2-dichloroethane over  the Fe/Ti=0.001% catalyst shows that the adsorptive  poteatial of  1,2-dichloroethane is stronger than H2O. But the H2O concentration  is  more  larger  than 1,2-dichloroethane. The performance would  decrease with the increasing of  H2O, and  obtained the activity energy Ea=139.6KJ/mol.

    第一章 前言                          1 第二章 文獻回顧                        4 2-1 VOCs的來源及危害                     5 2-1.1 VOCs的定義及來源                    5 2-1.2 Cl-VOCs的使用狀況                   7 2-2 1,2-二氯乙烷的特性與處理                 9 2-2.1 二氯乙烷危害                      10 2-2.2 二氯乙烷處理                      12 2-3 光催化原理                        12 2-4 二氧化鈦的基本特性                    17 2-5 二氧化鈦的改質                      19 2-5.1 添加金屬原子                      19 2-5.2 添加金屬離子                      20 2-5.3 加入其它種半導體                    21 2-6 觸媒的製備                        23 2-7 二氧化鈦光觸媒塗佈方法                  27 2-7.1 浸漬塗佈方法                      27 2-7.2 旋轉塗佈法                       28 2-8 自製光觸媒分解1,2-二氯乙烷反應動力之探討         29 2-8.1 柱流式反應器基礎理論                  29 2-8.2 微分型反應器                      32 2-8.3 觸媒異相反應模式                    33 第三章 研究方法與實驗設備                   37 3-1 研究方法                         37 3-1.1 實驗規劃                        37 3-1.2 實驗步驟與方法                     38 3-2 預備實驗                         39 3-2.1 光觸媒之製備                      39 3-2.2 玻璃基材的清洗與秤重                  41 3-2.3 光觸媒膜之製備                     41 3-2.4 鍛燒後的光觸媒膜之定量                 43 3-2.5 檢量線製作                       44 3-2.6 光催化之背景實驗                    45 3-3 實驗設備                         45 3-3.1 實驗系統裝置                      45 3-3.2 試藥與氣體                       53 第四章 結果與討論                      55 4-1 自製TiO2之特性分析                    55 4-1.1 熱重分析(Thermal Gravity Analyst,TGA)           55 4-1.2 X-射線繞射分析(X-ray Diffraction,XRD)           57 4-1.3 UV-Visible 光譜分析                  60 4-1.4 FTIR分析(Fourier Transform Infrared Spectrometer)     62 4-1.5 在不同停留時間下自製TiO2光觸媒處理1,2-二氯乙烷之轉化率分析64 4-1.6 在不同相對溼度下自製TiO2光觸媒處理1,2-二氯乙烷之轉化率分析65 4-1.7 以500。C鍛燒3小時後之光觸媒處理1,2-二氯乙烷的產物分析  67 4-1.8 以500。C鍛燒3小時經反應後之TiO2光觸媒SEM、Mapping、EDS分析70 4-2 自製Pd/TiO2光觸媒之特性分析                72 4-2.1 熱重分析                         72 4-2.2 X-射線繞射分析(X-ray Diffraction,XRD)           76 4-2.3 UV-Visible 光譜分析                    78 4-2.4 以500。C鍛燒3小時後不同Pd/Ti比例光觸媒處理1,2-二氯乙烷的轉化率分析                            79 4-2.5 以500。C鍛燒3小時後之Pd/TiO2光觸媒處理二氯乙烷的產物分析 81 4-2.6 以500。C鍛燒3小時後摻雜Pd的TiO2光觸媒Mapping、EDS分析  82 4-3 自製V/TiO2光觸媒之特性分析                 85 4-3.1 熱重分析                         85 4-3.2 X-射線繞射分析(X-ray Diffraction,XRD)           88 4-3.3 UV-Visible 光譜分析                   93 4-3.4 以500。C鍛燒3小時後不同V/Ti比例光觸媒處理1,2-二氯乙烷的轉化率分析 95 4-3.5 以500。C鍛燒3小時後之V/TiO2光觸媒處理1,2-二氯乙烷的產物分析    98 4-3.6 BET比表面積及孔洞分佈分析              100 4-3.7 以500。C鍛燒3小時後摻雜V的TiO2光觸媒Mapping、EDS分析102 4-4 自製Fe/TiO2光觸媒之特性分析                105 4-4.1 熱重分析                         105 4-4.2 X-射線繞射分析(X-ray Diffraction,XRD)          108 4-4.3 UV-Visible 光譜分析                   111 4-4.4 以500。C鍛燒3小時後不同Fe/Ti比例光觸媒處理1,2-二氯乙烷的轉化率分析113 4-4.5 以500。C鍛燒3小時後之Fe/TiO2光觸媒處理二氯乙烷的產物分析 115 4-4.6 BET比表面積及孔洞分佈分析                117 4-2.7 以500。C鍛燒3小時經反應後摻雜Fe的TiO2光觸媒之Mapping、EDS分析119 4-5 自製V-Fe/TiO2光觸媒之特性分析               121 4-5.1 熱重分析(Thermal Gravity Analyst,TGA)          121 4-5.2 X-射線繞射分析(X-ray Diffraction,XRD)          123 4-5.3 UV-Visible 光譜分析                   126 4-5.4 以500。C鍛燒3小時後不同Fe/V/Ti比例光觸媒處理1,2-二氯乙烷的轉化率分析                   127 4-5.5 BET比表面積及孔洞分佈分析                130 4-5.6 以500。C鍛燒3小時經反應後摻雜Fe-V的TiO2光觸媒Mapping分析 132 4-6 自製Fe/TiO2光觸媒之動力分析                134 第五章 結論與建議                       138 5-1 結論                             138 5-2 建議                             140

    Ana M. Ruiz, Albert Cornet, Kengo Shimanoe, Joan R. Morante, Noboru Yamazoe. Effects of various metal additives on the gas sensing performances of TiO2 nanocrystals obtained from hydrothermal treatments. Sensors and Actuators., 2004, 108, 3190-3196.

    Amy L. Linsebigler; Guangquan Lu; and John T. Yates Jr. Photocatalysis on TiOn Surfaces: Principles, Mechanisms, and Selected Results. Chemical Reviews., 1995, 95, 735-785.

    Anpo M; Shima T; Kodama S; et al. J. Phys. Chem. 1987, 91, 4305-4310.

    Bandara, J.; Mielczarski, J. A.; Lopez, A.; Kiwi J. Sensitized degradation of chlorophenols on iron oxides induced by visible light Comparison with titanium oxide. Applied Catalysis B: Environmental., 2001 , 34, 321-333.

    Benesi, H. A.; Bonner, R. V.; Lee, C. F. Determination of pore colume of solid catalyst. Analytical Chemistry., 1955, 27, 1963-2965.

    Carolina Belver, Mariya Jose Lopez-Munoz, Juan M. Coronado, Javier Soria. Palladium enhanced resistance to deactivation of titanium dioxide during the photocatalytic oxidation of toluene vapors. Applied Catalysis B: Environmental., 2003, 46, 497-509.
    Choi W., Termin A., Hoffmann M.R., The Role of Metal Ion Dopants inQuantum-SizedTiO2:Correlation between Photoreactivity and Charge Carrier Recombination Dynamics.Journal of Physical Chemistry.,1994, 98,13669-13679.

    De Boer, J. H., Lippens, B. C., Linsen, B. G., Broek-hoff, J. C. P., van den Heuval, A., Osinga, Th. J., “The t-curve of Multimolecular N2-adsorption”, Journal of Colloid and Interface Science., 1966, 21, 405-414.

    Enric Brillas; Eva Mur; Roser Sauleda; Laura Sanchez; Jose Peral; Xavier Domenech; Juan Casado. Aniline mineralization by AOP,s: anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes. Applied catalysis B: Environmental., 1998, 16, 3142.

    Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann. Environmental Applications of Semiconductor Photocatalysis. Chemical Revies., 1995, 95, 69-96.

    H. Yoneyama, S.Haga,Photocatalytic activities of microcrystalline titania incorporated in sheet silicates of clay, Journal of Physical Chemistry., 1981, 93, 4833-4837.

    Hung, C.-H. ;Marinas, Benito-J., Role of water in the photocatalytic degradation of trichoroethylene vapor on TiO2 films. Environmental Science and Technology., 1997, 31, 1440-1445.

    Inkley, F. A.; Everett, in D. H.; Stone, F. S. Structure and properties of porous materials. Academic, New York, 1958, 124.

    Jimmy C. Yu ; Jun Lin ; Raymund W.M. Fwok. Enhanced photocatalytic activity of Ti1-xVxO2 solid solution on the degradation of acetone. Journal of Photochemistry and Photobiology A:Chemistry., 1997, 199-230.

    Jiefang Zhu; Wei Zheng ; Bin Hea; Jinlong Zhang;, Masakazu Anpo. Characterization of Fe–TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water. Journal of Molecular Catalysis A: Chemical., 2004, 35-43.

    Jinmy C. Yu; Jun Lin; Raymund W. M. Kwok. Enhanced photocatalytic activity of Ti1-xVxO2 solid solution on the degradation of acetone. Journal of Photochemistry and Photobiology A:Chemistry., 1997, 111, 199-203.

    Jacoby, A.W.; Blake, D.M., Fennell, J.A., Boulter, J/E. and Vargo, L.M., Hetrogeneous Photocatalysis for Control of Volatile Organic Compounds in Indoor Air. The 88th Air&Water Management Association., 1996, 46, 891-898.

    Karvinen, S. The effects of trace elements on the crystal properties of TiO2. Solid State Sciences.. 2003, 5, 811-819.

    Kazuya Iketani , Ren-De Sun, Motoyuki Toki ,., Ken Hirota , Osamu Yamaguchi .Sol–gel-derived VxTi1-xO2 films and their photocatalytic activities under visible light irradiation. Materials Science and Engineering B., 2004, 108, 187-193.

    Katsuhiko Hirano , Hidenori Nitta, Katsuya Sawada. Effect of sonication on the photo-catalytic mineralization of some chlorinated organic compounds. Ultrasonics Sonochemistry., 2005, 12, 271-276.

    Larbot, A.;Nabias G;Cot, L. Preparation and characterization of colloidal solution derived crystallized titania powder . Journal of the European ceramic society., 1998, 18, 2175-2181.

    Laura Cermenati, Daniele Dondi, Maurizio Fagnoni and Angelo Albini. Titanium dioxide photocatalysis of adamantine. Tetrahedron., 2003, 59, 6409-6414.

    M. Anpo, T. Shima, S.Kodama, Y.Kubokawa, Photocatalytic hydrogenation of CH3CCH with H2O on Small-particle TiO2:size quantization effects and reaction intermediates. Journal of Physical Chemistry., 1987, 91, 4305-4310.

    Man Park; Sridhar Komarneni; Rustum Roy. Microwave–hydrothermal decomposition of chlorinated organic compounds. Materials Letters., 2000, 43 ,259-263.

    Masahisa Okada, Yasusei Yamada, Ping Jin, Masato Tazawa, Kazuki Yoshimura. Fabrication of multifunctional coating which combines low-e property and visible-light-responsive photocatalytic activity. Thin Solid Films., 2003, 442, 217-221.

    O. Harizanov, T. Ivanova, A. Harizanova. Study of sol–gel TiO2 and TiO2 –MnO obtained from a peptized solution. Materials Letters., 2001, 49, 165-171.

    Opee, T.N.; Brown, R.T. TiO2 photocatalysis for indoor air applications: Effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1,3-butadiene. Environ. Sci. Technol., 1995, 29, 12-23

    Patrick, V., Gavalas, R., Flyzani-Stephanopoulos, M., Jothimurugisan, K., “High Temperature Sulfidation -Regeneration of CuO-Al2O3 Sorbent”, Ind. Eng. Chem. Res., 1989, 28, 931-940.

    Rosana M. Alberici; Wilson F. Jardim. Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide. Applied Catalysis B:Environmental., 1997, 14, 55-68.

    R.S. Sonawane;, B.B. Kale; M.K. Dongare. Preparation and photo-catalytic activity of Fe–TiO2 thin films prepared by sol–gel dip coating. Materials Chemistry and Physics., 2004, 85, 52-57.

    R.S. Sonawane; S.G. Hegde; M.K. Dongare. Preparation of titanium(IV) oxide thin film photocatalyst by sol–gel dip coating. Materials Chemistry and Physics., 2002, 77, 744-750.
    Roberts, B. F. Journal of Colloid and Interface Science., 1967, 23, 266.

    Serpone, N.; Lawless, D. Spectroscopic, Photoconductivity, and Photocatalytic Studies of TiO2 Colloids: Naked and with the Lattice Doped with Cr3+, Fe3+, and V5+ Cations. Langmuir., 1994, 10, 643.

    Sivakumar, S.;P. Krishna Pillai.; Mukundan, P.; K.G.K. Warrier. Sol–gel synthesis of nanosized anatase from titanyl sulfate. Materials Letters., 2002, 57, 330–335.

    S. Malato Rodriguez, J. Blanco Galvez, Manuel I. Maldonado Rubio,P. Fernandez Ibanez, W. Gernjak, I. Oller Alberola. Treatment of chlorinated solvents by TiO2 photocatalysis and photo-Fenton: influence of operating conditions in a solar pilot plant. Chemosphere., 2005, 58, 391-398.

    S. I. Shah, W. Li , C.-P. Huang , O. Jung , and C. Ni. Study of Nd3+, Pd2+, Pt4+, and Fe3+ dopant effect on photoreactivity of TiO2 nanoparticles. Proceedings of National Academy of Sciences., 2002, 99, 6482-6486.

    Sha Jin, Fumihide Shiraishi. Photocatalytic activities enhanced for decompositions of organic compounds over metal-photodepositing titanium dioxide. Journal of Chemical Engineering., 2004, 97, 203-211.

    T. Bezrodna, G. Puchkovska, V. Shymanovska, A. Hauser. X-ray and AFM studies of polydisperse TiO2 (anatase) particles. Journal of Physics and Chemistry of Solids., 2005, 01, 1-7.

    V. Keller, P. Bernhardt, and F. Garin. Photocatalytic oxidation of butyl acetate in vapor phase on TiO2, Pt/TiO2 and WO3/TiO2 catalysts. Journal of Catalysis., 2003, 215, 129-138.

    Wang, J. A.; R. Limas-Ballesteros. Quantitative Determination of Titanium Lattice Defects and Solid-State Reaction Mechanism in Iron-Doped TiO2 Photocatalysts. Journal of Physical Chemistry B.. 2001, 105, 9692-9698.
    Y. Bessekhouad, D. Robert., J.V. Weber. Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant. Journal of Photochemistry and Photobiology A: Chemistry., 2004, 163, 569-580.

    勞工安全衛生研究所,http://www.iosh.gov.tw/intro/show/show7.htm

    劉國棟,「VOC管制趨勢展望」,工業污染防制,第48期,1992,15-31。
    蔡文田、張慶源,「揮發性有機物(VOCs)催化燃燒處理」,環境工程會刊,第四期,1992,41-58。

    蔡文田,「含氯溶劑可行減廢技術介紹」,工業污染防治,第三期,1993.,171-182。

    盧滄海、賴龍山,「廢溶劑回收可行性探討」,工業污染防治,第29期,1989,102-117。

    劉國棟,「VOC管制趨勢展望」,工業污染防制,第48期,1992,15-31。

    蔡文田、張慶源,「揮發性有機物(VOCs)催化燃燒處理」,環境工程會刊,第四期,1992,41-58。

    董俊興,經摻雜之二氧化鈦觸媒膜光分解性質之研究,國立中央大學化學工程學系碩士論文,2001年

    黃振家,「揮發性有機廢氣處理技術:活性碳吸附」,化工第44卷第三期,p.49-59,1997。

    下載圖示 校內:立即公開
    校外:2005-07-04公開
    QR CODE