| 研究生: |
陳俊凱 Chen, Jun-Kai |
|---|---|
| 論文名稱: |
垂直同心圓環內的暫態自然對流及熱輻射 Transient Natural Convection and Radiation in Vertical Concentric Annulus |
| 指導教授: |
王振源
Wang, C. Y |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 自然對流 、熱輻射 、垂直同心圓環 |
| 外文關鍵詞: | Vertical Concentric Annulus, Natural Convection, Radiation |
| 相關次數: | 點閱:65 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文的目的是以快速熱處理 (Rapid Thermal Process) 機台的燈座設計為基礎,建立垂直同心圓環內的自然對流及熱輻射的模式,以模擬機台操作時加熱燈內的熱交換現象,以及在不同操作條件下,由單一加熱燈輻射進入快速熱處理機台工作腔體 (chamber) 的熱通量。
根據這個熱輻射及熱對流的模式,模擬單一加熱燈的操作可以發現,當燈罩內表面使用吸收率較低的金屬時,可以使較多的能量進入快速熱處理機台的工作腔體裡。而當快速熱處理機台工作腔體內的溫度提高時,在相同燈泡功率的情況下,由加熱燈輻射進入到工作腔體的能量會隨之提高。以及外部冷卻系統的質量流率大小,對加熱燈內的自然對流場有影響,但對單一加熱燈熱輻射到工作腔體的熱通量影響不大。
The purpose of present study is to set up a simulative model combining effects of natural convection and thermal radiation in the lamp vessel of RTP furnace. Most is devoted to the investigation of the heat flux on the bottom surface, where the energy left the vessel into the RTP chamber, under different working circumstances.
From our investigation, we find out that more energy leaves the bottom surface of the vessel into the RTP chamber when we plate with metal of lower absorptivity on the reflected surface. On the other hand, the energy leaving the bottom surface is also increased as we increase the temperature of the RTP chamber (the temperature on the bottom surface of the vessel). Finally, the flow rate of external cooling system will affect the flow field of the vessel but has little impact on the heat flux leaving the vessel.
1.Gyurcsik, R. S., Riley, T. J., and Sorrell, F. Y., “A Model for Rapid Thermal Processing : Achieving Uniformity Through Lamp Control,” IEEE Transactions on Semiconductor Manufacturing, Vol. 4, No. 1, Feb., 1991.
2.Sorrell, F. Y., Fordham, M. J., and Wortman, J. J., “Temperature Uniformity in RTP Furances,” IEEE Transactions on Electron Devices, Vol. 39, No. 1, Jan., 1992.
3.Dilhac, J. M., “Thermal Modeling of a Wafer in a Rapid Thermal Processor,” IEEE Transactions on Semiconductor Manufacturing, Vol. 8, No. 4, Nov., 1995.
4.Lee, K. C., Chang, H. Y., Chang, H., Hwu, J. G., and Wung, T. S., “The Effect of Patterned Susceptor on the Thickness Uniformity of Rapid Thermal Oxides,” IEEE Transactions on Semiconductor Manufacturing, Vol. 12, No. 3, Aug., 1999.
5.Su, C. C., “Thermal Simulation on Heated Wafer in Rapid Thermal Processing,” Chung-Shan Institute of Science and Technology Lungtan, Taiwan, R. O. C., 2000.
6.Davis, G. V., and Thomas, R. W., “Natural Convection between Concentric Vertical Cylinders,” High-Speed Computing in Fluid Dynamics, The Physics of Fluids Supplement II, pp. 198-207, 1969.
7.Coney, J. E. R., and El-shaarawi, M. A. I., “Finite Difference Analysis for Laminar Flow Heat Transfer in Concentric Annuli with Simultaneously Developing Hydrodynamic and Thermal Boundary Layers,” International Journal for Numerical Methods in Engineering, Vol. 9, pp. 17-38, 1975.
8.El-shaarawi, M. A. I., and Sarhan, A., “Free Convection Effects on the Developing Laminar Flow in Vertical Concentric Annuli,” ASME Journal of Heat Transfer, Vol. 102, pp. 617-622, Nov., 1980.
9.El-shaarawi, M. A. I., and Sarhan, A., “Combined Forced-Free Laminar Convection in The Entry Region of A Vertical Annulus with A Rotating Inner Cylinder,” International Journal of Heat and Mass Transfer, Vol. 25, No. 2, pp. 175-186, 1982.
10.Al-arabi, M., El-shaarawi, M. A. I., and Khamis, M., “Natural Convection in Uniformly Heated Vertical Annuli,” International Journal of Heat and Mass Transfer, Vol. 30, No. 7, pp. 1381-1389, 1987.
11.Menashe, J., and Wakeham, W. A., “Effect of Absorption of Radiation on Thermal Conductivity Measurements by The Transient Hot-Wire Technique,” International Journal of Heat and Mass Transfer, Vol. 25, No. 5, pp. 661-673, 1982.
12.Zhukauskas, A., “Heat Transfer from Tubes in Cross Flow,” in J.P. Hartnett and T.F. Irvine, Jr., Eds., Advances in Heat Transfer, Vol. 8, Academic Press, New York, 1972.
13.Siegel, R., and Howell, J. R., Thermal Radiation Heat Transfer, 3 rd edition, Hemisphere, Washington, D. C., 1992.
14.Patankar, S. V., Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, D. C., 1980.
15.Kays, W. M., and Crawford, M. E., Convective Heat and Mass Transfer, 3 rd edition, McGraw-Hill, New York, 1993.
16.Brewster, M. Q., Thermal Radiative Transfer and Properties, John Wiley, New York, 1992.
17.Incropera, F. P., and DeWitt, D. P., Fundamentals of Heat and Mass Transfer, 4 th edition, John Wiley, New York, 1996.
18.Fanderlik, I., Optical Properties of Glass, Elsevier, Amsterdam, 1983.
19.Hortmann, M. and Peric, M., “Finite Volume Multigrid Prediction of Laminar Natural Convection : Bench-Mark Solutions,” International Journal for Numerical Method in Fluids, Vol. 11, pp. 189-207, 1990.
20.Gerald, C. F., and Wheatley, P. O., Applied Numerical Analysis, 4 th edition, Addison-Wesley, 1989.
21.Lewis, R. W., Morgan, K., and Zienkiewicz, O. C., Numerical Methods in Heat Transfer, John Wiley, 1981.
22.Chen, Y., Booth, L., Schaper, C., Khuri-Yakub, B. T., and Saraswat, K. C., “3D Modeling of Rapid Thermal Processors for Design Optimization of a New Flexible RTP System,” International Electron Devies Meeting, pp. 545-
548, 1994.
23.Knutsin, K. L., Campbell, S. A., and Dunn, F., “Modeling of Three-Dimensional Effects on Temperature Uniformity in Rapid Thermal Processing of Eight Inch Wafers,” IEEE Transactions on Semiconductor Manufacturing ,Vol. 7, No. 1, Feb., 1994.
24.Sorrell, F. Y., and Harris, J.A., “A Global Model for Rapid Thermal Processors,” IEEE Transactions on Semiconductor Manufacturing ,Vol. 3, No. 4, Nov., 1990.
25.Guyer, E. C., Handbook of Applied Thermal Design, McGraw-Hill, New York, 1988.
26.Modest, M. F., Radiative Heat Transfer, McGraw-Hill, New York, 1993.
27.Touloukian, Y. S., and DeWitt, D. P., Thermal Radiative Properties : Nonmetallic Solids, Vol. 8 of Thermophysical Properties of Matter, Plenum Press, New York, 1972.