簡易檢索 / 詳目顯示

研究生: 薛光展
Xue, Guang-Zhan
論文名稱: 嘉南地區地下水含砷濃度對稻米含砷量之風險評估
Risk assessment of Arsenic concentration in groundwater to the rice containing arsenic in Chia-Nan Area
指導教授: 徐國錦
Hsu, Kuo-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 71
中文關鍵詞: 克利金法風險評估
外文關鍵詞: arsenic, risk assessment, kriging
相關次數: 點閱:118下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣地區含有高砷地下水之地區以嘉義縣的布袋鎮、義竹鎮,以及台南縣的北門鄉、學甲鎮最為嚴重。雖然上述四地區的居民在自來水普及之後,幾乎已經不再飲用井水,但當地居民取用含砷地下水進行稻田灌溉及養殖魚蝦的情形依然不變。由於稻米是國人的主要糧食,對其食用安全性是不可忽視的,因此本研究嘗試了解使用含砷地下水來灌溉對於稻米是否會產生影響進而造成對人體危害。本研究採用地質統計中的克利金方法來估計研究區中地質的含砷量,以求得最佳的空間估計值。再經由地質統計之結果結合風險評估藉以推估出嘉南地區地下水中的砷對於作物(稻米)之影響性進而了解地下水含砷是否會危害到人體。
    本研究分析之結果顯示:在本研究區域之含砷地下水的空間結構連續性是以東北-西南向為主,且本研究地區之地下水含砷量幾乎都超過了飲用水最大可容許量(>0.01 mg/l),其最高含砷量之地區是位於嘉義布袋、朴子及台南北門、新市等處。而含砷地下水之時空分佈情形,比較值得注意是在民國94年裡其空間連續性由東北-西南向轉至東-西向,且影響範圍似乎有縮小之趨勢。並針對三股站砷濃度之異常升高,研判可能與總有機碳、錳之改變量有相關,顯示該地區可能於民國94年有外來刺激源以改變當地之水文地質環境。
    風險評估針方面,對以含砷地下水為農田灌溉水源之稻米。風險評估分析之結果顯示,地下水含砷量若是超過0.035 mg/l,則稻米含無機砷量已達食品危險標準值(0.15 mg/kg),而在研究區內僅上、下部地區及中部靠山之地區為安全區外,其餘地區都已超過危險標準。因此農田灌溉用水能仍應做避免使用含砷之地下水源,以減少砷可能造成之毒害。
    在不同因子影響之分析上,稻米吸附砷較土壤吸附砷對稻米含砷安全之影響性來的大。

    Arsenic in ground water has been detected in many areas of Taiwan. The most serious areas include Jiayi County and Tainan County. Although residents of these areas have no longer to drink ground water after tap-water supplies these areas, ground water is still used for crop, cultivation fish and shrimp. Since rice has been the main food source of Taiwan resident, the edible security can’t be ignored.This research investigates the risk analysis of arsenic in groundwater on crop in Chia-Nan area. Geostatistical method was conducted to describe the spatial distribution of arsenic. The result is combined to risk assessment to estimate the effect of arsenic in the Chia-Nan region groundwater on the crop. Our results show that the spatial structure of the groundwater containing Arsenic has the longest correlation in northeast-southwest direction. Most of Chia-Nan areas contain the Arsenic in the water exceeding 0.01 mg/L, which is the maximum drinking water toleration. Besides, the areas for highest concentration are Budai, Beimen, Puzih and Shin-shih. The most correlated direction of the arsenic in groundwater changes from northeast-southwest to east-west direction in 2005. The influence range seems to reduce gradually. The Arsenic concentration of the station Sangu is found to be abnormally high, which may be in conjunction with the change of TOC and Mn. This result indicates that the hydrogeological environment may be impacted by some unknown external stimuli in 2005. Risk assessment is performed to evaluate the impact of arsenic in groundwater to crop. The results shows that as concentration of ground water contains exceeds 0.035 mg/l, the inorganic arsenic quantity in rice has reached the food standard (0.15 mg/kg). Inland of the Chia-Nan area is safe for rice containing Arsenic. However, other areas may exceed the standard. Therefore, groundwater should be carefully used for irrigation. From the sensitivity analysis, the arsenic adsorbed by rice seems to have more influence than the arsenic adsorbed by soil.

    摘要(中).............................................. I 摘要(英).............................................. III 誌謝.................................................. V 目錄.................................................. VI 表目錄................................................ X 圖目錄................................................ XI 第一章 緒論......................................... 1 1-1研究動機與目的..................................... 1 1-2 砷的介紹.......................................... 2 1-2-1 砷於環境之中的分佈.............................. 3 1-2-2 砷對人體所造成的危害............................ 6 1-2-3 砷的管制標準.................................... 7 1-3 地下水之一般地球化學特性.......................... 7 1-4 前人研究.......................................... 8 1-5 研究流程.......................................... 11 第二章 研究理論..................................... 12 2-1 地質統計理論...................................... 12 2-2 二階定常性與本質假設.............................. 13 2-2-1 二階定常性...................................... 13 2-2-2 本質假設或本質定常性............................ 13 2-3 共變異數與半變異數................................ 14 2-4 共變異數與半變異圖之正定條件...................... 14 2-5 半變異圖.......................................... 16 2-5-1 實驗半變差圖.................................... 16 2-5-2 一般常用的理論半變差圖模式...................... 17 2-6 模式驗證.......................................... 18 2-7 克利金優點........................................ 19 2-8 克利金法.......................................... 19 2-8-1 普通克利金法................................ 19 第三章 嘉南地區地下水砷之時空分布分析............... 22 3-1 研究區域概述...................................... 22 3-2 水文地質概況...................................... 23 3-3 水質資料.......................................... 25 3-4 嘉南地區地下水含砷資料之敘述統計.................. 27 3-5 變差函數分析...................................... 28 3-6 砷之時空分析...................................... 33 3-7 統計分析之結果.................................... 38 第四章 風險評估..................................... 39 4-1 何謂風險評估...................................... 39 4-2 風險評估之準則.................................... 39 4-3 污染途徑.......................................... 42 4-4 風險評估計算步驟.................................. 42 4-4-1 地下水至土壤砷量之移轉.......................... 43 4-4-2 土壤至稻米砷量之移轉............................ 44 4-4-3 稻米轉移至稻米之含無機砷量...................... 45 4-5 風險評估之量化結果................................ 46 4-6 不同因子之敏感度分析.............................. 48 第五章 結論與建議................................... 52 5-1結果............................................... 52 5-2建議............................................... 53 參考文獻.............................................. 55 附錄A................................................. 61 附錄B................................................. 71 自述.................................................. 84

    (一)中文部份
    中央地質調查所 http://www.moeacgs.gov.tw/main.jsp
    王子誠 (2003) 嘉南平原地下水腐植物質之含量及其與砷、鐵及錳濃度之關係:螢光強度研究,國立台灣大學地質科學研究所碩士論文;共69頁。
    王仁鋒、胡光道 (1988) 線性地質學,中國北京地質出版社
    王榮德、胡賦強、江錦華、吳新英 (1983) 飲用水改善前後,烏腳病發生率之研究,烏腳病之研究報告,第18輯,台灣省烏腳病防治中心:頁21~25
    朱雲鵬、林師模、李育明、葉欣誠 (2001) 「地下水污染之解決刻不容緩」,變遷中的福爾摩莎2002,224-229
    何春蓀 (1986) 台灣地質概論--台灣地質圖說明書,二版。經濟部中央地質調查所出版
    吳建民 (1989) 烏腳病地區地下水文之水文地質特性。經濟部中央地質調查所水文地質研討會專輯
    呂峰洲 (1996) 中國大陸地方病考察記:砷引起烏腳病學說的省思,健康世界、健康世界出版社,第130期:頁59~74
    呂峰洲、山村行夫、山內博 (1987) 台灣烏腳病患區一口井水中螢光物質之研究:腐植物質,台灣醫誌,第87卷第1號:頁66~74
    呂峰洲、楊重光、林國煌 (1975) 嘉南烏腳病患區飲用水之理化性質,台灣醫學會雜誌,第74卷:頁596~605
    林政剛,2003,「攝入地下水砷所引發致癌風險之研究」,萬能學報,5:285-303
    邱弘毅 (1994)「砷與癌症」,醫學繼續教育,5:586-592
    畢如蓮 (1995) 台灣嘉南平原地下水砷生成途徑與地質環境之初步探討,國立台灣大學地質學研究所碩士論文;共77頁
    郭自強 (1998)「食用水產品中多氯聯苯與金屬之標的危害商數及潛在終生致癌風險評估」,台北醫學院公共衛生學研究所碩士論文
    陳文福 (2005) 台灣的地下水。遠足文化出版
    陳拱北 (1974) 烏腳病人的分布調查研究,省衛生處委託研究的烏腳病調查研究報告:頁7~25
    陳靜生 (1992) 水環境化學 。曉圓出版社,共403頁
    陳鎮東 (1994) 海洋化學,國立編譯館,共551頁
    陳麒全 (2003) 台灣嘉南平原新東及錦湖兩地沉積物砷富集與釋出之研究,國立台灣大學地質學研究所碩士論文;共69頁
    曾文賓 (1985) 含砷井水與烏腳病進展,烏腳病之研究報告第23輯,台灣省烏腳病防治小組
    湯忠達 (2000) 「地下水污染之暴露與健康風險評估-以桃園RCA 場址為例」,國立臺灣大學環境工程學研究所碩士論文
    飲用水水質標準 http://law.epa.gov.tw/zh-tw/laws/359367440.html

    楊瑩文 (2006) 台灣嘉南平原西南沿海烏腳病地區地下水砷之氧化還原反應
    經濟部水利局 http://www.wra.gov.tw/
    經濟部環境保護署 http://www.epa.gov.tw/main/index.asp
    劉振宇、林高弘 (2005) 地質 第24卷第2期,經濟部中央地質調查所:頁61~68
    劉聰桂 (1999) 嘉南平原地下水定年分析及垂向水質變化研究。經濟部水資源局
    賴典章、費立沅、江崇榮 (2003) 台灣地區地下水分區特性,水文地質調查與應用研討會論文集:1-24頁
    謝華、廖曉勇、陳同斌、林鑒釗 (2005) 污染農田中植物的砷含量及其健康風險評估--以湖南郴州鄧家塘為例,地理研究,第24卷,第1期
    韓柏檉 (1999) 「台灣地區海產中污染質與健康風險評估初探」,生命科學簡訊, 13:10
    顏富士 (1978) 曾文溪下游之砷異常及板岩屑與漂砂,科學發展月刊,第6卷第3期
    嚴慶宏 (2002) 土壤重金屬污染分級準則探討與地理統計分析,國立台北大學,共100頁

    (二)英文部份
    ATSDR (2000), “Toxicological profile for arsenic”. US Department of Health and Human Services, Public Health Service, ATSDR, 428
    Berg, M., Tran, H.C., Nguyen, T.C., Pham, H.V., Schertenleib, R., and Giger, W. (2001), “Arsenic contamination of groundwater and drinking water in Vietnam: A human health threat”. Environ. Sci. Technol., 35: 2621–2626.
    Brookins, D.G. (1988) Eh-pH diagrams for geochemistry. Springer-Verlag, Berlin.
    Burgess, T.M. and Webster, R. (1980) “Optimal interpolation and isarithmic mapping of soil properties ”, Journal of Soil Science, 31, pp.315-331,.
    Chen C.M., Yu, S.C., and Liu, M.C. (2001), “Use of Japanese medaka (Oryzias latipes) and tilapia (Oreochromis mossambicus) in toxicity tests on different industrial effluents in Taiwan”. Arch. Environ. Con. Tox., 40:363–370
    Chen, C.J., Hsu, L.I., Tesng, C.H., Hsueh, Y.M., and Chiou, H.Y. (1999), “Emerging epidemics of arseniasis in Asia”, In: Chappell W.R., Abernathy C.O., Calderon R.L. (Eds.), Arsenic exposure and health effects. Elsevier Sci. B. V., p. 113-121.
    Chen, C.J., Wu, M.M., and Kuo, T.L. (1988), “Arsenic and cancers”. Lancet, 1: 414-415.
    Chen, S.L., Dzeng, S.R., Yang, M.H., Chiu, K.H., Shieh, G.M., and Wai, C.M. (1994), “As species in groundwater of the black-food disease area, Taiwan”. Environ. Sci. Technol., 28: 877-881.
    Liu, C.W., Jang, C.S., Liao, C.. (2004) Evaluation of arsenic contamination potential using indicator kriging in the Yun-Lin aquifer (Taiwan), Science of the Total Environment. 321:173~188
    Curtis D. K., Caserett, L. J., Amdur, M.O., Doull, J. (1996), Casarett and Doull’s toxicology: the basic science of poisons. McGraw-Hill, NY: Companies Inc., p. 691-736
    EPA (1986) “Guildelines for carcinogen risk assessment”. Washington, Dc. Federal Register, 51:185, 33992-34003.
    Gaus I., Kinniburgh, D. G., Talbot, J. C., and Webster, R. (2003) Geostatistical analysis of arsenic concentration in groundwater in Bangladesh using disjunctive kriging, Environmental Geology. 44:939~948
    Grisel, N., Matera, V., Le Bayon, R.C. and Gobat, J.-N. (2007) “Transfer of arsenic of geogenic origin from soil to plants (Pteris vittata L. and Lycospersicon esculentum Mill.)”
    Hsu, L.M. (1984) Pleistocence formation with dissolved-in-water type gas in the Chianan Plain, Taiwan: Petroleum Geology of Taiwan, 20, 199-213
    IPCS (2001), “Arsenic and arsenic compounds”. EHC, No: 224.
    http://www.inchem.org/documents/ehc/ehc/ehc224.htm
    Jain, C.K. and Ali, I. (2000), “Arsenic: Occurrence, toxicity and speciation techniques”. Wat. Res., 34: 4304-4312.
    Smith, J. L., Halvorson, J. J. and Papendick, R. L. (1993). “Using multiple variable indicator kriging for evaluating soil quality”. Soil Sec. Am. J. 57:743-749
    Journal, A. G. (1983) Non-Parametric Estimation of Spatial Distribution, Mathematical Geology, 15(3):445~468
    Lawrence, B.G. (1996), Toxic risk assessment and management. Van Nostrand Reinhold, p. 223-227.
    Liu, J., Zheng, B.S., Aposhian, H.V., Zhou, Y.S., Chen, M.L., Zhang, A.H., and Waalkes, M.P.(2002), “Chronic arsenic poisoning from burning high-arsenic-containing coal in Guizhou, China”. Environ. Health Pers., 110: 119–122
    Malachowski, M.E. (1990), “An update on arsenic”. Clin. Lab. Med., 10: 459-471
    Mandal, B.K. and Suzuki, K.T. (2002) Arsenic around the world: a review: Talanta, 58, 201-235
    Matheron, G. (1963) Principle of Geostatistics, Economic Geology, 58:1246~1266
    Meharg, A.A. & Rahman, M.M. (2003) Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption. Environ Sci Technol, 37:229-234
    Mood﹐A.M.﹐Graybill, F.A. and Bols, D.C. (1974) “Introduction to the Theory of statistics”﹐3rd ed. McGraw-Hill Bool Company.
    NRC (1983), "Risk assessment in the federal government: managing the process". NAS-NRC Committee on the Institutional Means for Assessment of Risks to Public Health, National Academy Press, Washington, DC
    Pontius, F.W., Brown, K.G., and Chen, C.J. (1994), “Health implication of arsenic in drinking water”. J. Am. Water Works Ass., 86: 52-63.
    Sadiq, M. and Alam, I.(1996) Arsenic chemistry in a groundwater aquifer from the eastern province of Saudi Arabia. Water, Air, and Soil Pollution, v89, pp.67~76.
    Shraim, A., Sekarn, N.C., Anuradha, C.D. and Hirano, S. (2002) Speciation of arsenic in tube-well water samples collected from West Bengal, India, by high-performance liquid chromatography-inductively coupled plasma mass spectrometry, Applied Organometallic Chemistry, 16, 202-209.
    Smedley, P.L. and Kinniburgh, D.G. (2002) A review of the source, behaviour and distribution of arsenic in natural waters: Applied Geochemistry, 17, 517-568.
    Szramek, K., Walter, L.M. and McCall, P. (2004) Arsenic mobility in groundwater/surface water systems in carbonate-rich Pleistocene glacial drift aquifers(Michigan), Applied Geochemistry, 19, 1137-1155
    Takahashi Y., Minamikawa R., Hattori K.H., Kurishimak., Kihiu N. & Yuita K. (2004) Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods. Environ. Sci. Technol., 38:1038-1044
    Tseng, C.H, Chong, C.K, Chen, C.J, Lin, B.J, and Tai, T.Y. (1995), “Abnormal peripheral microcirculation in seemingly normal subjects living in blackfoot-disease- hyperendemic villages in Taiwan”. Int. J. Microcirc. Clinical Exp., 15: 21-7
    Wedepolh, K. H., Correns, C. W., Shaw, D.M. and Turekian (1969) Handbook of Geochemistry, 33:Arsenic. Speinger-Verlag Berlin, Heidelberg; New York
    WHO (2001) Environmental Health Criteria 224: Arsenic compounds 2nd edition. World Health Organisation, Geneva
    Williams, P.N., Islam, M.R., Adomako, E.E., Raab, A., Hossain, S.A., Zhu, Y.G. and Meharg, A.A. (2006) Increase in rice grain arsenic for regions of Bangladesh irrigating paddies with elevated arsenic in groundwater. Environ. Sci. Technol., 40:4903-4908
    Williams, P.N., Price, A.H., Raab, A., Hossain, S.A., Feldmann, J. and Meharg, A.A. (2005) Variation in arsenic speciation and concentration in paddy rice related to dietary exposure. Environ. Sci. Technol., 39:5531-5540
    Yoshinaga, J., Chatterjee, A., Shibata, Y., Morita, M., and Edmonds, J.S. (2000), “Human urine certified reference material for arsenic speciation”. Clin. Chem., 46: 1781-1786.

    下載圖示 校內:立即公開
    校外:2007-07-21公開
    QR CODE