| 研究生: |
許育禎 Hsu, Yu-Chen |
|---|---|
| 論文名稱: |
高密度電漿化學氣相沉積法製作低應力氮化矽薄膜於微機電應用之研究 Fabrication of Low Stress HDP-CVD Silicon Nitride Films in MEMS Application |
| 指導教授: |
高騏
Cau, Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 殘留梯度應力 、懸臂樑 、殘留應力 、微橋 、微機電系統 |
| 外文關鍵詞: | MEMS, residual stress, residual gradient stress, microbridge, cantilever beams |
| 相關次數: | 點閱:97 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
對於微機電系統(MEMS)而言,高密度電漿化學氣相沉積法(HDP-CVD)是一種較新的薄膜沉積技術,此沉積法可得到較PECVD法性質更為出色的薄膜。然而,薄膜材料均難以避免殘留應力的存在。有別於半導體元件的是,薄膜製成的微懸浮結構需要對底下的犧牲層進行蝕刻以使微結構能夠懸浮,存在於薄膜中的殘留應力和殘留梯度應力因此得以釋放,而導致微結構產生彎曲和挫曲等結構形變。
本論文研究旨在以HDP-CVD製作低殘留應力之氮化矽薄膜,並探討沉積參數、微懸浮結構與殘留應力之相關性。實驗結果顯示,適當的調整沉積參數,可使氮化矽殘留應力值分佈於-200~200MPa之間。此外,文中亦探討退火溫度為400℃~600℃時,對薄膜化學鍵結與殘留應力之影響。當退火溫度升高至75℃~300℃時,薄膜中之殘留氣體會減少,導致薄膜中之NH3以氣態方式向外擴散。同時,氮化矽薄膜殘留應力隨退火溫度增加逐漸轉變成拉伸應力型態。
為觀察殘留應力於薄膜中之分佈,實驗中設計了懸臂樑結構。結果顯示,氮化矽懸臂樑因承受一正向的殘留梯度應力,使結構體呈現向上翹曲。此研究結果顯示,適當的調整HDP-CVD沉積參數,則可調降薄膜殘留應力以及製作出微懸浮結構。
Abstract
High density plasma chemical vapor deposition (HDP-CVD) is an newly thin film process for the fabrication of microelectromechanical systems (MEMS). The HDP film has many excellent film properties than the PECVD film. However, thin film materials are normally under residual stresses as a result of fabrication processes. Unlike microelectronic devices, a microstructure is no longer constrained by its underlying sacrificial layer after anisotropic etch undercutting; therefore, residual stresses and residual gradient stress may result in bending and buckling of a microstructure.
The objective of this present work is to use HDP-CVD technology to fabricate a low stress silicon nitride films and study the effects of deposition parameters on microstructure and stress distribution of there films in as-deposited state. The experimental results showed that the residual stress in the silicon nitride films can be reduced to the range of -200~200MPa by adjusting proper deposition parameters. The chemical contents and stress distribution were studied as a function of the annealing temperatures in the range from 400℃ to 600℃. The residual gases decreases with the increase in annealing temperatures from 75℃ to 300℃, causing the out-diffusion of NH3. Meanwhile, the stress in silicon nitride film could be transformed from the compressive region to the tensile region.
In addition, self-deformed micromachined cantilevers are fabricated to exhibit the residual gradient stress from curvature of the bending beams. The silicon nitride cantilever beams bent upward by a positive residual gradient stress. The present work shows that adjusting the HDP-CVD deposition parameters, the residual stress of the deposited films can be significantly reduced and a flat microstructures can be fabricated.
參考文獻
1.Hey H. P. W., Sluijk B. G., and Hemmes D. G., “Ion Bombardement Factor in Plasma CVD”, Solid State Technol., April, pp.139-144, 1990.
2.Weast RC. CRC, “Handbook of Chemistry and Physics”, 76th edition. Boca Raton, FL: CRC Press, 1995-1996.
3.Takagi T., Takechi K., Nakagawa Y., Watabe Y. and Nishida S., “High Rate Deposition of a-Si:H and a-SiNx:H by VHF PECVD”, Vac., vol.51, number 4, pp.751-755, 1998.
4.Orfert M., Richter K., “Plasma Enhanced Chemical Vapor Deposition of SiN-film for Passivation of Three-dimensional Substrates”, Surface and Coatings Technology, 116-119, pp.622-628, 1999.
5.Bae S., Farber D. G., and Fonash S. J., “Characteristics of Low-temperature Silicon Nitride (SiNx:H) Using Electron Cyclotron Resonance Plasma”, Solid-State Electronics 44, pp.1355-1360, 2000.
6.Yota J., Janani M., Camilletti L. E., Kar-Roy A., Liu Q. Z., Nguyen C., Woo M. D., “Comparison between HDP-CVD and PECVD Silicon Nitride for Advanced Interconnect Applications”, IEEE, PP.76-78, 2000.
7.Wu T. H. T., and Rosler R. S., “Stress in PSG and Nitride Films as Related to Film Properties and Annealing”, Solid State Technol., May, pp.65-71, 1992.
8.Caliano G., Galanello F., Caronti A., Carotenuto R., Pappalardo M., Foglietti V., Lamberti N., “Micromachined Ultrasonic Transducers Using Silicon Nitride Membrane Fabricated in PECVD Fechnology”, IEEE Ultrasonics Symposium, pp.963-967, 2000.
9.Zhang X., Chen K.–S., Ghodssi R., Ayón A. A., and Spearing S. M., “Residual Stress and Fracture in Thick Tetraethylorthosilicate(TEOS) and Silane-based PECVD Oxide Films ”, Sensors and Actuators A91, pp.373-380, 2001.
10.Yee Y., Park M., and Chun K., “A Sticking Model of Suspended Polysilicon Microstructure Including Residual Stress Gradient and Postrelease Temperature”, J. Microelectromech. Syst., vol. 7, no.3, pp.339-344, September 1998.
11.Zhang T.-Y., Su Y.-J., Qian C.-F., Zhao M.-H. and Chen L.-Q., “Microbridge Testing of Silicon Nitride Thin Film Deposition on Silicon Wafers”, Acta mater., 48, pp.2843-2857, 2000.
12.Zubel I., and Kramkowska M., “The Effect of Isopropyl Alcohol on Etching Rate and Roughness of (100) Si Surface Etched in KOH and TMAH Solutions”, Sensors and Actuators A93, pp.138-147, 2001.
13.Folkmer B., Steniner P. and Lang W., “A Pressure Sensor Based on a Nitride Membrane Using Single-Crystalline Piezoresistors”, Sensors and Actuators A54, pp.488-492, 1996.
14.Sugiyama S., Shimaoka K. and Tabata O., “Surface Micromachined Micro-Diaphragm Pressure Sensors”, International Conference on Solid-State Sensors and Actuators, Transducers ’91 Digest of Technical Papers, pp.188-191, 1991.
15.Tabata O., Kawahata K., Sugiyanma S. and Igarashi I., “Mechanical Property Measurements of Thin Films Using Load-Deflection of Composite Rectangular Membrane”, An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots, Proceedings, pp.152-156, 1989.
16.Gregory T. A. and Kovacs, “Micromachined Transducers Sourcebook”, McGraw-Hill, Inc., New York, 1998.
17.Donald L. Smith, “Thin-Film Deposition”, McGraw-Hill, Inc., New York, 1995.
18.Marc Madou, “Fundamentals of Microfabrication”, CRC Press, Boca Raton, 1997.
19.莊達人, VLSI 製造技術, 高立出版社, 1999.
20.Doerner M. F., Nix W. D., “Stresses and Deformation Processes in Thin Films on Substrates”, CRC Critical Review in Solid State and Materials Science, Vol. 14, pp. 225, 1988.
21.汪建民, 材料分析, 中國材料科學學會, 2001.
22.Kim B. H., Chung T. D., Oh C. H., and Chun K., “A new organic modifier for anti-stiction”, J. Microelectromech. Syst., vol. 10, no.1, pp.33-40, March 2001.
23.Matsumoto Y., Shimada T., Ishida and M., “Novel prevention method of stiction using silicon anodization for SOI structure”, Sensors and Actuators A72, pp.153-159, 1999.
24.Kim C. –J., Kim J. Y., and Sridharan B., “Comparative evaluation of drying techniques for surface micromachining”, Sensors and Actuators A64, pp.17-26, 1998.