簡易檢索 / 詳目顯示

研究生: 黃志仁
Huang, Chih-Jen
論文名稱: 利用人類記憶結構提升案例式學習法中個案擷取效率
Using human memory structure to improve the efficiency of case retrieval in Case-Based Reasoning
指導教授: 利德江
Li, Der-Chang
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 56
中文關鍵詞: 人類記憶結構案例擷取案例式推理
相關次數: 點閱:36下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   案例式推理(Case-Based Reasoning: CBR)是近年在人工智慧領域中廣為大家所討論及應用的議題之一。在案例式推理的流程中,為了增加系統的推理能力往往透過保留案例的步驟將推論過的案例保留進案例庫。然而隨著案例庫案例的擴張,將造成系統在擷取案例時,計算相似度上的負擔,導致系統擷取效率下降的問題。本研究認為案例式推理起源於人類的認知推理過程,當人類遭遇問題時,往往從自身過去經驗中找尋類似事件、情境,進而利用過去的解決方案對目前的問題進行決策。然而人類並不會因為經驗的累積導致在記憶搜尋上速度顯著下降。因此本研究從認知心理學觀點切入探討人類的記憶結構,進而重建案例式推理中的案例庫,並且提出兩階段案例推理模式,改善案例式推理中案例擷取隨著案例數增加而減緩擷取速度的問題,進而增進推論效率。

    none

    目錄.................................................. Ⅰ 圖目錄.................................................. Ⅲ 表目錄.................................................. Ⅳ 第一章緒論.............................................. 1 1.1 研究背景................................................. 1 1.1.1 案例式推理流程..................................... 2 1.1.2 案例擷取........................................... 4 1.2 研究動機與目的........................................... 4 1.3 研究流程................................................. 5 第二章文獻探討........................................ 6 2.1 記憶結構................................................. 6 2.1.1 雙記憶結構......................................... 6 2.1.2 記憶結構........................................... 8 2.2 案例式推理............................................... 10 2.2.1 案例式推理之適用領域與優缺點....................... 11 2.2.2 CBR 模式........................................... 14 2.3 案例擷取................................................. 18 2.3.1 最近鄰居擷取法..................................... 18 2.3.2 歸納式擷取......................................... 21 2.3.3 最近鄰居擷取法v.s 歸納式擷取法..................... 22 2.3.4 近年案例擷取之研究................................. 23 第三章系統建構........................................ 27 3.1 案例庫的重建與維護....................................... 27 3.2 兩階段案例式推理流程..................................... 30 第四章實証研究........................................ 34 4.1 實驗設定................................................. 34 4.2 工作記憶容量與相關集合容量之實驗......................... 37 4.3 兩階段案例推理模式與傳統案例式推理模式之比較實驗......... 43 第五章結論與建議...................................... 50 參考文獻................................................. 52 附錄.................................................. 55

    中文部分
    方榮吉(民91)。以案例式推理建構主機板製程分析系統,台北科技大學生產系統工程與管理研究所論文。
    王麒瑋(民92)。支向機核心函數是用指標之建立,成功大學工業與資訊管理研究所論文。
    林志明(民88)。應用案例式推理、灰色關聯分析法發展產品設計評估決策支援系統,中央大學工業管理研究所碩士論文。
    柯文達(民91)。校園意外事件處理程序之案例式研究,東華大學教育研究所論文。
    陳一傑(民86)。應用模糊理論於多專家案例式推理之研究,元智大學工業工程研究所論文。
    黃弘毅(民90)。設計概念階段之產品知識建構與應用-以案例式推理法為例,東海大學工業設計所論文。
    鄭昭明(民82)。認知心理學,桂冠,台北。
    鄭麗玉(民82)。認知心理學,五南,台北。

    英文部分
    Aadomt, A. and Plaza, E. (1994). Case-Based Reasoning : foundational issue, methodological variation, and system approaches .Artificial Intelligence Communications, 7 (1), 39-59.
    Abasolo, C., Plaza, E., and Arcos, J. L. (2002). Components for case-based reasoning systems. Artificial Intelligence, 2504, 1-16.
    Aha, D. W. (1992). Tolerating noisy .irrelevant and novel attribute in instance-based learning algorithms. International Journal of Man-machine Studies, 36, 267-287.
    Allen, B. P. (1994). Case-Based Reasoning: business application. Communication of the ACM, 37(3), 40-42.
    Baddeley, A. (1996). Exploring the central executive. Quarterly Journal of Experimental Psychology, 49, 5-24.
    Chiu, C. (2002). A case-based customer classification approach for direct marketing. Expert Systems with Applications, 22, 163-168.
    Collins, A. M. and Loftus, J. B. (1975). A spreading activation theory of semantic processing. Psychological Review, 82,407-428.
    Finnie, G. and Sun, Z. (2002). Fuzzy rule-based models for case retrieval. Engineering Intelligent Systems for Electrical Enginnring and Communications, 10 (4), 215-226
    Finnie, G., and Sun, Z. (2003). R5 model for Case-Based Reasoning. Knowledge-Based System, 16(1), 59-65
    Hunt, J. (1995). Evolutionary case based design. in: Watson, I. (Ed.) Progress in Case- Based Reasoning, LNAI 1020, (pp.17-31), Berlin: Springer.
    Jeng, B. C. and Liang, T. P. (1995). Fuzzy indexing and retrieval in case based systems. Expert System with Applications, 8(1), 135-142.
    Kolodner, J. (1993). Case-Based Reasoning. San Mateo, CA: Morgan Kaufmann Publishers.
    Kolodner, J. (1988). Retrieving events from a case memory. Proceedings of the Case-Based Reasoning Workshop. San Mateo, CA: Morgan Kaufmann Publishers, 233-249.
    Kraslawski, A., Koiranen, T., and Nystrom, L. (1995). Case-based reasoning system for mixing equipment selection. Computer and Chemical Engineering, 19, s821-s826.
    Lawton, J. H., Turner, R. M., and Turner, E. H. (1999). A unified long-term memory system. In Althoff, K. D., Bergmann, R., and Branting, L. K. (Eds), Case-based Reasoning Research and Development : the Third International Conference on Case-Based Reasoning, ICCBR99, (pp.188-202) Germany : Springer-Verlag.
    Leake, D. B. (1996). Case-Based Reasoning : experiences , lessons &future direction. Menlo Park, California : MIT Press.
    Mitchell, T. M. (1997). Machine Learning .New York : McGraw-Hill.
    Murdock, B.B. Jr. (1962). The serial position effect in free recall. Journal of Experimental Pychology, 64, 482-488.
    Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81-106.
    Ricsbeck, C. K. and Schank, R. (1989). Inside Case-Based Reasoning . NJ :Erlbaum, Northvale.
    Ronald, T. K. (2003).Cognitive Psychology ,Thousand Oaks: Sage Publications.
    Vargas, J. E. and Raj, S.(1993). Developing maintainable expert system using case-based reasoning. Expert System, 10, 219-225.
    Wang, Z., Liu, Z., and Ai, X.(2003). Case representation and similarity in high-speed machining. International Journal of Machine Tools & Manufacture, 43(13), 1347-1353.
    Waugh, R. M. and Norman, D. A. (1965). Primary Memory. Psychology Review, (72), p89-104.
    Watson, I. (1999). Caes-based reasoning is a methodology not a technology. Knowledge-Based System, 12, 303-308.
    Watson, I. (1997). Applying Case-Based Reasoning :techniques for enterprise systems. San Francisco :Morgan Kaufmann Publishers.
    Smyth, B. and Mckenna, E. (2001). Competence guided incremental footprint-based retrieval. Knowledge-Based Systems, 14, 155-166.
    Smyth, B. and Mckenna, E. (1999). Footprint-Based Retrieval. In Althoff, K. D., Bergmann, R., and Branting, L. K. (Eds), Case-Based Reasoning Research and Development :the Third International Conference on Case-Based Reasoning, ICCBR99, (pp.343-357) Germany : Springer-Verlag.
    Solso, R. (1998).Cognitive Psychology 5th ed . Boston: Allyn and Bacon.

    下載圖示 校內:立即公開
    校外:2004-06-11公開
    QR CODE