| 研究生: |
翁志遠 Weng, Chih-Yuan |
|---|---|
| 論文名稱: |
介電泳場流分離法之數值模擬與實驗研究 Numerical Simulation and Experimental Study of Particle Separation by DEP Field-Flow Fractionation |
| 指導教授: |
呂宗行
Leu, Tzong-Shyng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 163 |
| 中文關鍵詞: | 波動漂浮 、數值模擬 、粒子聚焦 、指叉型電極 、粒子追蹤測速法 、介電泳力 、場流分離法 、不均勻電場 |
| 外文關鍵詞: | interdigitated microelectrodes, numerical simulation, dielectrophoretic, DEP-FFF, PTV, Wavy levitation, nonuniform electric field |
| 相關次數: | 點閱:90 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
介電泳場流分離法(DEP Field-Flow Fractionation, FFF)是一種結合介電泳力與流體力兩種力之細胞分離方法,使不同介電性質粒子受介電泳力作用漂浮到流場中不同高度,進而利用流場內速度不同而分離細胞。本研究主要是以微機電製成加工技術(MEMS fabrication)於玻璃基底上製作指叉型電極(Interdigitated microelectrodes),並利用其產生不均勻電場(Nonuniform electric field),使粒子受負介電泳力作用而漂浮。對此本研究在無上壁面及不同之電極寬度d1與鄰近兩電極間距寬度d2比例的情況下,根據介電泳力與其粒子所受重力平衡條件,利用解析方法推導出粒子漂浮高度近似解,同時使用數值模擬方法計算出粒子的漂浮高度,與解析近似解相比較。結果顯示當d1:d2=1:1時,近似解有最大的適用範圍,且在數值模擬及實驗中也發現不均勻電場會造成「粒子波動漂浮」的現象。本研究也利用上壁面存在的邊界條件下,模擬探討有限的管道高度對粒子的漂浮高度的影響。
本研究亦設計不同形式之電極並實驗探討其對粒子漂浮高度的影響。經由實驗與模擬結果比較後,發現當粒子漂浮高度在波動漂浮區域h/d<0.6之範圍時,實驗與理論近似解會有大於10微米的差異,同時在此區域中也觀察到粒子會有波動漂浮的現象;而當粒子漂浮高度在漂浮高度及電極寬度比h/d>0.6之範圍時,實驗與理論近似解結果吻合誤差僅3至10微米。
最後,本研究成功的設計出單邊粒子聚焦式指叉型電極實驗晶片,並藉由模擬軟體瞭解了本晶片之作用機制及實驗現象也得以解釋,經實驗證實本晶片之設計將能使粒子聚焦及改善波動漂浮的情形達到有效分離的效能。
By taking advantage of dielectrophoretic (DEP) and hydrodynamic forces, DEP Field-Flow Fractionation (FFF) technique is firstly used DEP force to levitate particles to different heights according to their different dielectric properties. Based on the parabolic velocity profile of channel folw field, particles could be separated by height or velocity difference. In this study, MEMS-fabricated interdigit microelectrodes were used to generate the non-uniform electric fields. The approximate analytical solution by balancing dielectrophoretic forces with the gravitational forces is introduced. One can obtain the approximate solution of the levitation height. At the same time, numerical simulation was compared with the approximate solution. The results indicated the first-order approximate solution has the maximum working range in numerical results as the ratio of electrode width and gap equals 1. The phenomenon of wavy levitated particles was revealed from both numerical simulation results and experiments. And the levitation heights with finite channel height have also been investigated.
In experimental results, different shapes of electrodes were designed to investigate the levitation heights. By comparing the results of experiment and the approximate solution, the phenomena of wavy levitated particles were discovered by experiments and the discrepancies between numerical simulation and approximated analytical solution showed more than 10 micrometer when the ratio of levitated height and electrode width was smaller than 0.6. Once when the ratio of levitated height and electrode width was larger than 0.6, the discrepancies between numerical simulation and approximated analytical solution showed only 3 micrometer to 10 micrometer.
Based on the DEP theories, the device of the single-side focusing interdigitated microelectrodes could achieve the purpose of gathering particles and improving wavy levitation. Through numerical simulation, the working principle of single-side focusing interdigitated microelectrodes and the results of experiments could be realized and explained.
[1]Richard Feyman, “There is plenty of room at the bottom”, http://www.zyvex.com/ nanotech/feynman.html, 1959
[2]A. Manz, N. Graber, H. M. Winder, Miniaturized total chemical analysis system a novel concept for chemical sensing, Sensors and Actuators, B1, 244–248, 1990
[3]S. J. Lee, S. Y. Lee, Micro total analysis system in biotechnology, Microboil. Biotechnol., Vol. 64, 289–299, 2004
[4]Herbert A. Pohl, The motion and precipition of suspensoids in divergent electric fields, J. Appl. Phys., Vol. 22, 869–871, 1951
[5]Herbert A. Pohl, Some effects of nonuniform fields on dielectrics., J. Appl. Phys., Vol. 29, 1182–1188, 1958
[6]Herbert A. Pohl, Joe S. Crane, Dielectrophoresis of cells., J. Biophy., Vol. 11, 711-727, 1971
[7] Maja Mischel, Arthur Voss, Herbert A. Pohl, Cellular spin resonance in rotating electric fields, J. Biol. Phys., Vol. 10, 223-226, 1982
[8]J. S. Batchelder, Dielectrophoretic manipulator, Rev. Sci. Instrum., Vol. 54, 300-302, 1983
[9]S. Masuda, M. Washizu, I. Kawabata, Movement of blood cells in liquid by nonuniform traveling field, IEEE Transactions on Industry Applications, Vol. 24, No. 2, 217-223, 1988.
[10]Shaun Elder, Will Gathright, Ben Levy, Wen Tu, AC electrokinetics and nanotechnology
[11]Peter Gascoyne, Chulabhorn Mahidol, Mathuros Ruchirawat, JutamaadSatayavivad, Piyajit Watcharasitb, Frederick F. Beckera, Microsample preparation by dielectrophoresis: isolation of malaria, Lab Chip, Vol. 2, 70–75, 2002
[12]G. Fuhr, R. Hagedorn, T. Muller, Linear motion of dielectric particles and living cells in microfabricated structures induced by traveling electric fields, IEEE MEMS, 259-264, 1991
[13]X. B. Wang, Y. Huang, J. P. H. Burt, G. H. Mark, R. Pethig, Selective dielectrophoretic confinement of bioparticles in potential energy wells, J. Phys. D: Appl. Phys., Vol. 26, 1278-1285, 1993
[14]Peter Gascoyne, Jody V. Vykoukal, Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments, IEEE, Vol. 92, NO. 1, 22-42, 2004
[15]Davis J. M., J. C. Giddings, Feasibility study of dielectric field-flow- fractionation, Sepa. Sci. and Tech, Vol. 21, 969 –989, 1986
[16]J. C. Giddings, Field-flow fractionation of macromolecules, J. Chromatogr, Vol.470, 327–335, 1989
[17]Gerard H. Mark, Ronald Pethig, Dielectrophoretic separation of cells: continuous separation, Biotech. Bioeng., Vol. 45, 337-343, 1995
[18]Torsten Mtiller, Stefan Fiedler, Thomas Schnelle, Kai Ludwig, Hartmut Junga, Gtinter Fuhr, High frequency electric fields for trapping of viruses, Biotech. Techniq, Vol. 10, No.4, 221-226, 1996
[19]Ronald Pethig, Gerard H. Markx, Applications of dielectrophoresis in biotechnology, Tibtech., Vol. 15, 426-432, 1997
[20]Y Huang, X. B. Wang, F. F. Becker, Peter R. C. Gascoyne, Introducing dielectrophoresis as a new force field for field-flow fractionation, biophysical journal, Vol. 73, 1118-1129, 1997
[21]X. B. Wang, Jody Vykoukal, F. F. Becker, Peter R. C. Gascoyne, Separation of polystyrene microbeads using dielectrophoretic/ gravitational for field-flow fractionation, biophysical journal, Vol. 74, 2689-2701, 1998
[22]Gerard H Markx, Ronald Pethig, Juliette Rousselet, The dielectrophoretic levitation of latex beads, with reference to field-flow fractionation, J. Phys. D: Appl. Phys., Vol. 30, 2470-2477, 1997
[23]Xujing Wang, X. B. Wang, F. F. Becker, Peter R. C. Gascoyne, A throretical method of electrical field analysis for dielectrophoretic electrode arrays using Green’s theorem, J. Phys. D: Appl. Phys., Vol. 29, 1649-1660, 1996
[24]Hywel Morgan, Alberto Garcia Izquierdo, David Bakewell, Nicolas G. Green, Antonio Ramos, The dielectrophoretic and travelling wave forces generated by interdigitated electrode arrays: analytical solution using Fourier series, J. Phys. D: Appl. Phys., Vol. 34, 1553-1561, 2001
[25]J. J. Feng, S. Krishnamoorthy, Z. J. Chen, V. B. Makhijani, Numerical and analytical studies of ac electric field in dielectrophoretic electrode arrays, NanoTech., Vol. 2, 85-88, 2002
[26]N. G. Green, A. Ramos, H. Morgan, Numerical solution of the dielectrophoretic and traveling wave forces for interdigitated electrode arrays using the finite element method, J. Electrostatics, Vol. 56, 235-254, 2002
[27]Dong Eui Chang, Sophie Loire, Igor Mezic, Closed-form solutions in the electrical field analysis for dielectrophoretic and travelling wave interdigitated electrode arrays, J. Phys. D: Appl. Phys., Vol. 36, 3073-3078, 2003
[28]I. N. Sneddon, Mixed boundary value problems in potential theory, page 165, New York: Wiley, 1966
[29]T. B. Jones, Electromechanics of particles, New York Cambridge University Press, 1995