簡易檢索 / 詳目顯示

研究生: 劉純帆
Liu, Chun-Fan
論文名稱: 針對存活臨床試驗探討解釋變數錯誤分類對調適隨機分派下穩健檢定統計量的影響
The impact of covariate misclassification on robust tests under covariate-adaptive randomization for survival clinical trials
指導教授: 蘇佩芳
Su, Pei-Fang
學位類別: 碩士
Master
系所名稱: 管理學院 - 統計學系
Department of Statistics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 50
中文關鍵詞: 解釋變數調適隨機分派錯誤分類矩陣Cox 比例風險模型
外文關鍵詞: Covariate, Adaptive randomization, Misclassification matrix, Cox model
相關次數: 點閱:90下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 臨床試驗中,解釋變數調適隨機分派(Covariate-Adaptive Randomization;CAR)是一種優化隨機化試驗設計的方法,其概念是在平衡治療組與控制組受試者人數的同時,能夠有效控制重要解釋變數對實驗結果的影響,降低實驗的偏差和提高統計檢定力。然而,在實務中,解釋變數被錯誤分類是不可避免的,當用於 CAR 的解釋變數被錯誤分類時,不僅無法達到解釋變數的平衡,也會影響後續進行檢定的有效性。由於 CAR 方法常用於存活資料分析,因此在本研究中我們使用 Cox 比例風險模型,推導出當解釋變數被錯誤分類時,對於 CAR 下穩健的檢定統計量的漸近分布的影響。此外,我們通過模擬研究,評估了兩種常見的 CAR 方法以及完全隨機分派的情況下,當解釋變數存在不同程度的錯誤分類時,不同檢定統計量的犯型 I 誤機率和檢定力曲線。並藉由國立成功大學醫學院附設醫院所提供的女性乳癌患者臨床資料進行實例分析,進一步驗證模擬中得到的結果。

    In clinical trials, Covariate-Adaptive Randomization (CAR) is a method for optimizing the randomization design. The concept behind CAR is to balance the number of subjects in the treatment and control groups while effectively controlling the influence of important covariates on the experimental outcomes. CAR ensures a more balanced randomization process, reduces experimental bias, and improves the statistical power of the analysis. However, in practice, misclassification of covariates is inevitable. When the covariates used in CAR are misclassified, not only does it prevent the balance of covariates but also affects the effectiveness of subsequent tests. As CAR is often used in survival analysis, in this study, we utilize the Cox proportional hazards model to derive the impact of misclassified covariates on the asymptotic distribution of robust test statistics under CAR.

    Additionally, we conducted simulation studies to evaluate the Type I error rates and power curves of different test statistics under two common CAR methods and simple randomization when the covariates are subject to varying degrees of misclassification. Furthermore, we validated the results through a case study using clinical data from female breast cancer patients provided by the National Cheng Kung University Hospital.

    中文摘要 I Abstract II 誌謝 VIII 目錄 IX 表目錄 XI 圖目錄 XII 第一章 緒論 1 1-1. 研究背景 1 1-2. 研究動機 2 第二章 文獻回顧 4 2-1. 隨機分派方法介紹 4 2-1.1 簡單隨機分派(SR) 4 2-1.2 解釋變數調適有偏硬幣隨機設計(CABC) 5 2-1.3 分層排列區集設計(SPB) 6 2-2. 解釋變數錯誤分類之下解釋變數調適隨機分派的性質 8 2-2.1 錯誤分類矩陣 8 2-2.2 解釋變數的層內不平衡測度 10 2-3. 存活臨床試驗中解釋變數調適隨機分派下的穩健檢定統計量 12 2-3.1 穩健 score 檢定統計量(TRS) 14 2-3.2 穩健對數秩檢定統計量(TRL) 17 2-3.3 分層對數秩檢定統計量(TSL) 18 第三章 研究方法 20 第四章 模擬 24 4-1. 模擬流程 24 4-1.1 案例一:工作風險模型正確 25 4-1.2 案例二:工作風險模型錯誤 25 4-2. 模擬結果 27 4-2.1 檢定統計量犯型 I 誤的機率 28 4-2.2 檢定統計量的檢定力曲線 31 第五章 臨床資料分析 37 5-1. 乳癌臨床資料介紹 37 5-1.1 資料前處理 39 5-1.2 敘述統計 40 5-2. 分析流程 42 5-3. 分析結果 43 第六章 結論與建議 47 參考文獻 48 附錄一 50

    Efron, B. (1971). Forcing a sequential experiment to be balanced. Biometrika, 58(3), 403-417.

    Fan, L., Yeatts, S. D., Wolf, B. J., McClure, L. A., Selim, M., & Palesch, Y. Y. (2018). The impact of covariate misclassification using generalized linear regression under covariate–adaptive randomization. Statistical methods in medical research, 27(1), 20-34.

    International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use. (1998). STATISTICAL PRINCIPLES FOR CLINICAL TRIALS E9. https://database.ich.org/sites/default/files/E9_Guideline.pdf

    Kumar, M., Nanavati, R., Modi, T. G., & Dobariya, C. (2016). Oral cancer: Etiology & risk factors: A review. Journal of cancer research and therapeutics, 12(2), 458-463.

    Lin, D. Y., & Wei, L. J. (1989). The robust inference for the Cox proportional hazards model. Journal of the American statistical Association, 84(408), 1074-1078.

    Ma, W., Hu, F., & Zhang, L. (2015). Testing hypotheses of covariate-adaptive randomized clinical trials. Journal of the American Statistical Association, 110(510), 669-680.

    Peto, R., & Peto, J. (1972). Asymptotically efficient rank invariant test procedures. Journal of the Royal Statistical Society: Series A (General), 135(2), 185-198.

    Peto, R., Pike, M., Armitage, P., Breslow, N. E., Cox, D. R., Howard, S. V., ... & Smith, P. G. (1976). Design and analysis of randomized clinical trials requiring prolonged observation of each patient. I. Introduction and design. British journal of cancer, 34(6), 585-612.

    Shao, J., Yu, X., & Zhong, B. (2010). A theory for testing hypotheses under covariate-adaptive randomization. Biometrika, 97(2), 347-360.

    Sun, Y. S., Zhao, Z., Yang, Z. N., Xu, F., Lu, H. J., Zhu, Z. Y., ... & Zhu, H. P. (2017). Risk factors and preventions of breast cancer. International journal of biological sciences, 13(11), 1387-1397.

    Wang, T., & Ma, W. (2021). The impact of misclassification on covariate‐adaptive randomized clinical trials. Biometrika, 77(2), 451-464.

    Ye, T., & Shao, J. (2020). Robust tests for treatment effect in survival analysis under covariate-adaptive randomization. Journal of the Royal Statistical Society Series B: Statistical Methodology, 82(5), 1301-1323.

    Zelen, M. (1974). The randomization and stratification of patients to clinical trials. Journal of Chronic Diseases, 27(7-8), 365–375.

    無法下載圖示 校內:2028-07-31公開
    校外:2028-07-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE