| 研究生: |
陳亭萱 Chen, Ting-Hsuan |
|---|---|
| 論文名稱: |
運用長脈衝雷射大面積精密拋光技術於SKD61模具鋼之系統參數最佳化設計與改質層微結構分析之研究 Optimization of Process Parameters of Large Area Polishing and Microstructure Study of the Heat Affected Zone of the SKD 61 Tool Steel Using Long Pulse Laser |
| 指導教授: |
林仁輝
Lin, Jen-Fin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 152 |
| 中文關鍵詞: | 雷射拋光 、表面粗糙度 、改質層 、田口實驗設計 |
| 外文關鍵詞: | laser polishing, surface roughness, worked layer, Taguchi method |
| 相關次數: | 點閱:183 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文之研究目的為以長脈衝摻鐿光纖雷射(Ytterbium-doped fiber laser, Yb:fiber laser)對SKD61工具鋼進行大面積之精密雷射拋光加工。
本研究將進行三個階段的實驗,分別為田口實驗設計、全因子實驗及重要因子水準改變實驗,探討與雷射拋光有關之六個加工參數:脈衝功率、掃描速度、脈衝寬度、掃描頻率、重疊率及離焦量,對於SKD61試件之表面粗糙度與表面形貌的影響,藉由三維粗度儀量測而得之表面粗糙度、空間傅立葉分析、材料承壓比曲線及轉移函數,找出可以達到符合要求之表面粗糙度及平坦度之拋光參數組合,以作為對大面積試片拋光加工之參考依據。另外,雷射拋光的過程中將會產生改質層,由於本研究使用之SKD61工具鋼主要用於製作模具,改質層的厚度、硬度、彈性模數將會影響其磨耗性質,因此在進行雷射拋光的前後,需對SKD61工具鋼試件進行各種微結構分析,本實驗中利用掃描式電子顯微鏡、奈米壓痕計、聚焦離子束、往復式磨耗試驗機及X光繞射儀等等設備進行量測,以比較拋光前後之微結構材料特性之改變。為了加以預測雷射拋光之溫升及改質層厚度,本研究利用Comsol多物理場耦合軟體,以熱傳、流體及表面驅動流方程式建立理論模型,模擬SKD61工具鋼受脈衝雷射加熱後之溫度分佈及改質層厚度。
根據拋光實驗之結果,試件之表面粗糙度可由0.283μm降至0.150μm,改善了47%;而由空間傅立葉分析可知,與雷射拋光掃描方向垂直之形貌會有效地降低其振幅,平行方向之形貌則與固化後形成之波紋有關。並綜合表面粗糙度、空間傅立葉分析及材料承壓比分析,可找出SKD61工具鋼之最佳雷射拋光加工條件。由微結構檢測可知,改質層厚度會隨雷射劑量及熔池中最高溫的增加而增加,硬度及彈性模數則會隨雷射劑量的增加而下降;此外,改質層的厚度與磨耗率有正比的關係;磨耗係數則會隨表面粗糙度增加而增加。由X光繞射分析則可知鐵(110)之強度越高,殘留應變會越高。經由數值分析而得之改質層厚度與實驗值比較有14.37%的誤差。
In the present study, SKD61 tool steel specimen were polished by a long pulsed Yb:fiber laser system. In order to define the workable range and achieve the mean areal surface roughness (SRa) as small as possible, the laser operating conditions were designed at three stages. The experiments of three stages includes Taguchi method, all factors experiments and change-levels of the important factors. And six adjusted parameters of laser polishing are the laser power, the scanning velocity, the pulse duration, the scanning frequency, the overlap percentage and the focal offset. By measuring the surface roughness, the spatial Fourier analysis, the material ratio and the transfer function, the optimization of process parameters of large area polishing can be found. And the microstructure of the heat affected zone also be study to realize the influence of laser polishing.
1. J. Ramos, J. Murphy, K. Wood, D. Bourell, and J. Beaman,“Surface Roughness Enhancement of Indirect-Sls Metal Parts by Laser Surface Polishing,” Twelfth Solid Freeform Fabrication Symposium, The University of Texas, pp. 28-38, 2001.
2. E. Willenborg,"Laserpolieren Von Werkzeugstählen," Dissertation RWTH Aachen University, Shaker, Aachen, 2005.
3. E. Willenborg, K. Wissenbach, and R. Poprawe,“Polishing by Laser Radiation,” Proceedings of the Second International WLT-Conference on Lasers in Manufacturing, München, pp. 297-300, 2003.
4. P. P. Pronko, S. K. Dutta, D. Du, and R. K. Singh,“Thermophysical Effects in Laser Processing of Materials with Picosecond and Femtosecond Pulses,”Journal of Applied Physics, Vol. 78, pp. 6233-6240, 1995.
5. M. L. Hupert, W. J. Guy, S. D. Llopis, H. Shadpour, S. Rani, D. E. Nikitopoulos, et al.,“Evaluation of Micromilled Metal Mold Masters for the Replication of Microchip Electrophoresis Devices,”Microfluidics and Nanofluidics, Vol. 3, pp. 1-11, 2007.
6. S. Supriadi, E. Baek, C. Choi, and B. Lee,“Binder System for Sts 316 Nanopowder Feedstocks in Micro-Metal Injection Molding,”Journal of materials processing technology, Vol. 187, pp. 270-273, 2007.
7. T. Gietzelt, O. Jacobi, V. Piotter, R. Ruprecht, and J. Hausselt,“Development of a Micro Annular Gear Pump by Micro Powder Injection Molding,”Journal of materials science, Vol. 39, pp. 2113-2119, 2004.
8. B. Tay, L. Liu, N. Loh, S. Tor, Y. Murakoshi, and R. Maeda,“Surface Roughness of Microstructured Component Fabricated by Μmim,”Materials Science and Engineering: A, Vol. 396, pp. 311-319, 2005.
9. L. Liu, N. Loh, B. Tay, S. Tor, Y. Murakoshi, and R. Maeda,“Effects of Thermal Debinding on Surface Roughness in Micro Powder Injection Molding,”Materials Letters, Vol. 61, pp. 809-812, 2007.
10. K. Guo,“Effect of Polishing Parameters on Morphology of Df2 (Aisi-O1) Steel Surface Polished by Nd: Yag Laser,”Surface Engineering, Vol. 25, pp. 187-195, 2009.
11. D. Landolt, P.-F. Chauvy, and O. Zinger,“Electrochemical Micromachining, Polishing and Surface Structuring of Metals: Fundamental Aspects and New Developments,”Electrochimica Acta, Vol. 48, pp. 3185-3201, 2003.
12. E. Brinksmeier, O. Riemer, A. Gessenharter, and L. Autschbach,“Polishing of Structured Molds,”CIRP Annals-Manufacturing Technology, Vol. 53, pp. 247-250, 2004.
13. W. M. Steen,Laser Material Processing, Springer, 2003.
14. T. Dobrev, D. Pham, and S. Dimov,“A Simulation Model for Crater Formation in Laser Milling.”
15. K. Steinhoff, W. Rasp, and O. Pawelski,“Formation of Paint Surface on Different Surface Structure of Steel Sheet,”Iron and Steel Engineer, Vol. 74, pp. 43-49, 1997.
16. G. Ryk, Y. Kligerman, and I. Etsion,“Experimental Investigation of Laser Surface Texturing for Reciprocating Automotive Components,”Tribology Transactions, Vol. 45, pp. 444-449, 2002.
17. P. Andersson, J. Koskinen, S. e. Varjus, Y. Gerbig, H. Haefke, S. Georgiou, et al.,“Microlubrication Effect by Laser-Textured Steel Surfaces,”Wear, Vol. 262, pp. 369-379, 2007.
18. D. Roberts and T. Modise,“Laser Removal of Loose Uranium Compound Contamination from Metal Surfaces,”Applied surface science, Vol. 253, pp. 5258-5267, 2007.
19. M. Mateo, G. Nicolas, V. Piñon, A. Ramil, and A. Yañez,“Laser Cleaning: An Alternative Method for Removing Oil-Spill Fuel Residues,”Applied surface science, Vol. 247, pp. 333-339, 2005.
20. D. Grojo, M. BoyoMo-Onana, A. Cros, and P. Delaporte,“Influence of Laser Pulse Shape on Dry Laser Cleaning,”Applied surface science, Vol. 252, pp. 4786-4791, 2006.
21. B. Bertussi, J.-Y. Natoli, and M. Commandre,“Effect of Polishing Process on Silica Surface Laser-Induced Damage Threshold at 355 Nm,”Optics communications, Vol. 242, pp. 227-231, 2004.
22. S. Lugomer,Laser Technology: Laser Driven Processes, Prentice Hall Englewood Cliffs, 1990.
23. W. W. Duley,“Laser Processing and Analysis of Materials,”New York, Plenum Press, 1983, 476 p., Vol. 1, 1983.
24. A. F. Mills and A. Mills,Basic Heat and Mass Transfer Vol. 2, Prentice hall Upper Saddler River, NJ, 1999.
25. J. Boy, E. Andrey, A. Boulouize, and C. Khan-Malek,“Developments in Microultrasonic Machining (Musm) at Femto-St,”The International Journal of Advanced Manufacturing Technology, Vol. 47, pp. 37-45, 2010.
26. C. Nüsser, I. Wehrmann, and E. Willenborg,“Influence of Intensity Distribution and Pulse Duration on Laser Micro Polishing,”Physics Procedia, Vol. 12, pp. 462-471, 2011.
27. E. Ukar, A. Lamikiz, L. N. López de Lacalle, F. Liebana, J. Etayo, and D. del Pozo,“Laser Polishing Operation for Die and Moulds Finishing,”Advanced Materials Research, Vol. 83, pp. 818-825, 2010.
28. A. Temmler, E. Willenborg, and K. Wissenbach,“Laser Polishing,” SPIE LASE, pp. 82430W-82430W-13, 2012.
29. A. Temmler, K. Graichen, and J. Donath,“Laser Polishing in Medical Engineering,”Laser Technik Journal, Vol. 7, pp. 53-57, 2010.
30. T. L. Perry, D. Werschmoeller, N. A. Duffie, X. Li, and F. E. Pfefferkorn,“Examination of Selective Pulsed Laser Micropolishing on Microfabricated Nickel Samples Using Spatial Frequency Analysis,”Journal of Manufacturing Science and Engineering, Vol. 131, p. 021002, 2009.
31. O. Y. Bol’shepaev and N. Katomin,“Laser Polishing of Glass Articles,”Glass and ceramics, Vol. 54, pp. 141-142, 1997.
32. A. Richmann, E. Willenborg, and K. Wissenbach,“Laser Polishing of Fused Silica,” Optical Fabrication and Testing, p. OTuC2, 2010.
33. M. Udrea, A. Alacakir, and H. Orun,“Laser Polishing of Optical Fiber End Surface,”Optical Engineering, Vol. 40, pp. 2026-2030, 2001.
34. T. M. Shao, M. Hua, H. Y. Tam, and E. H. M. Cheung,“An Approach to Modelling of Laser Polishing of Metals,”Surface and Coatings Technology, Vol. 197, pp. 77-84, 7/1/ 2005.
35. S. Pimenov, V. Kononenko, V. Ralchenko, V. Konov, S. Gloor, W. Lüthy, et al.,“Laser Polishing of Diamond Plates,”Applied Physics A, Vol. 69, pp. 81-88, 1999.
36. A. Erdemir, M. Halter, G. Fenske, A. Krauss, D. Gruen, S. Pimenov, et al.,“Durability and Tribological Performance of Smooth Diamond Films Produced by Ar-C< Sub> 60</Sub> Microwave Plasmas and by Laser Polishing,”Surface and Coatings Technology, Vol. 94, pp. 537-542, 1997.
37. G. Shafeev, S. Pimenov, and E. Loubnin,“Laser-Assisted Selective Metallisation of Diamonds by Electroless Ni and Cu Plating,”Applied surface science, Vol. 86, pp. 392-397, 1995.
38. S. Hogmark, P. Hollman, A. Alahelisten, and P. Hedenqvist,“Direct Current Bias Applied to Hot Flame Diamond Deposition Produces Smooth Low Friction Coatings,”Wear, Vol. 200, pp. 225-232, 1996.
39. D.-I. R. Ostholt, E. Willenborg, and K. Wissenbach,“Laser Polishing of Freeform Surfaces,” Proceedings of the 5th Int. WLT-Conference on Lasers in Manufacturing, pp. 397-402, 2009.
40. M. Hua, T. Shao, and H. Tam,“Surface Modification of Df-2 Tool Steel under the Scan of a Yag Laser in Continuously Moving Mode,”Journal of Materials Processing Technology, Vol. 209, pp. 4689-4697, 2009.
41. J. Ramos-Grez and D. Bourell,“Reducing Surface Roughness of Metallic Freeform-Fabricated Parts Using Non-Tactile Finishing Methods,”International Journal of Materials and Product Technology, Vol. 21, pp. 297-316, 2004.
42. A. Lamikiz, J. A. Sánchez Galindez, L. N. López de Lacalle, D. Del Pozo, and J. Etayo,“Surface Roughness Improvement Using Laser-Polishing Techniques,” Materials science forum, pp. 217-222, 2006.
43. A. Lamikiz, J. Sanchez, L. Lopez de Lacalle, and J. Arana,“Laser Polishing of Parts Built up by Selective Laser Sintering,”International Journal of Machine Tools and Manufacture, Vol. 47, pp. 2040-2050, 2007.
44. H.-Y. Wang, D. Bourell, and J. Beaman Jr,“Laser Polishing of Silica Slotted Rods,”Materials science and technology, Vol. 19, pp. 382-387, 2003.
45. M. Vadali, C. Ma, N. A. Duffie, X. Li, and F. E. Pfefferkorn,“Effects of Pulse Duration on Laser Micro Polishing,”Journal of Micro and Nano-Manufacturing, Vol. 1, p. 011006, 2013.
46. T. L. Perry, D. Werschmoeller, X. Li, F. E. Pfefferkorn, and N. A. Duffie,“The Effect of Laser Pulse Duration and Feed Rate on Pulsed Laser Polishing of Microfabricated Nickel Samples,”Journal of Manufacturing Science and Engineering, Vol. 131, p. 031002, 2009.
47. M. Hua, T. Shao, Y. Tam Hong, and E. Cheung Hon Man,“Influence of Pulse Duration on the Surface Morphology of Assab Df-2 (Aisi-01) Cold Work Steel Treated by Yag Laser,”Surface and Coatings Technology, Vol. 185, pp. 127-136, 7/22/ 2004.
48. F. E. Pfefferkorn, N. A. Duffie, X. Li, M. Vadali, and C. Ma,“Improving Surface Finish in Pulsed Laser Micro Polishing Using Thermocapillary Flow,”CIRP Annals - Manufacturing Technology, 2013.
49. M. Chow, E. V. Bordatchev, and G. K. Knopf,“Impact of Initial Surface Parameters on the Final Quality of Laser Micro-Polished Surfaces,” SPIE MOEMS-MEMS, pp. 824809-824809-10, 2012.
50. A. M. K. Hafiz, E. V. Bordatchev, and R. O. Tutunea-Fatan,“Influence of Overlap between the Laser Beam Tracks on Surface Quality in Laser Polishing of Aisi H13 Tool Steel,”Journal of Manufacturing Processes, Vol. 14, pp. 425-434, 10// 2012.
51. T. L. Perry, D. Werschmoeller, X. Li, F. E. Pfefferkorn, and N. A. Duffie,“Pulsed Laser Polishing of Micro-Milled Ti6al4v Samples,”Journal of Manufacturing Processes, Vol. 11, pp. 74-81, 2009.
52. W. Guo, M. Hua, P. W.-T. Tse, and A. C. K. Mok,“Process Parameters Selection for Laser Polishing Df2 (Aisi O1) by Nd: Yag Pulsed Laser Using Orthogonal Design,”The International Journal of Advanced Manufacturing Technology, Vol. 59, pp. 1009-1023, 2012.
53. A. Bustillo, E. Ukar, J. J. Rodriguez, and A. Lamikiz,“Modelling of Process Parameters in Laser Polishing of Steel Components Using Ensembles of Regression Trees,”International Journal of Computer Integrated Manufacturing, Vol. 24, pp. 735-747, 2011.
54. C. Nüsser, H. Sändker, and E. Willenborg,“Pulsed Laser Micro Polishing of Metals Using Dual-Beam Technology,”Physics Procedia, Vol. 41, pp. 346-355, // 2013.
55. R. Poprawe and W. Schulz,“Development and Application of New High-Power Laser Beam Sources,”Riken Review, pp. 3-10, 2003.
56. W. Pendleton, G. Williams, R. Williams, J. Wu, G. Cvijanovich, J. Joyce, et al.,“Scanning Tunneling Microscopy of Nickel Surface Features before and after Rapid Melting by Excimer Laser,”AMP Journal of Technology, Vol. 3, pp. 75-84, 1993.
57. D. B. Tuckerman and A. H. Weisberg,“Planarization of Gold and Aluminum Thin Films Using a Pulsed Laser,”Electron Device Letters, IEEE, Vol. 7, pp. 1-4, 1986.
58. P. F. Marella, D. B. Tuckerman, and R. F. Pease,“Modeling of Laser Planarization of Thin Metal Films,”Applied Physics Letters, Vol. 54, pp. 1109-1111, 1989.
59. M. Vadali, C. Ma, N. A. Duffie, X. Li, and F. E. Pfefferkorn,“Pulsed Laser Micro Polishing: Surface Prediction Model,”Journal of Manufacturing Processes, 2012.
60. S. Kou and D. Sun,“Fluid Flow and Weld Penetration in Stationary Arc Welds,”Metallurgical Transactions A, Vol. 16, pp. 203-213, 1985.
61. M. Tsai and S. Kou,“Marangoni Convection in Weld Pools with a Free Surface,”International Journal for Numerical Methods in Fluids, Vol. 9, pp. 1503-1516, 1989.
62. C. Ma, M. Vadali, N. A. Duffie, F. E. Pfefferkorn, and X. Li,“Melt Pool Flow and Surface Evolution During Pulsed Laser Micro Polishing of Ti6al4v,”Journal of Manufacturing Science and Engineering, Vol. 135, p. 061023, 2013.
63. M. A. Moncayo, S. Santhanakrishnan, H. D. Vora, and N. B. Dahotre,“Computational Modeling and Experimental Based Parametric Study of Multi-Track Laser Processing on Alumina,”Optics & Laser Technology, Vol. 48, pp. 570-579, 2013.
64. A. Beiser, S. Mahajan, and S. R. Choudhury,Concepts of Modern Physics, Tata McGraw-Hill Education, 2003.
65. 翁俊仁,“高功率光纖雷射介紹,”儀科中心簡訊, pp. 10-11, 2007.
66. 張國順,現代雷射製造技術, 新文京開發, 2008.
67. W. M. Steen, J. Mazumder, and K. G. Watkins,Laser Material Processing, Springer, 2003.
68. A. Lamikiz, J. A. Sánchez, L. N. López de Lacalle, D. Del Pozo, and J. Etayo,“Surface Roughness Improvement Using Laser-Polishing Techniques,” Materials science forum, pp. 217-222, 2006.
69. K. Ravindran, J. Srinivasan, and A. G. Marathe,“Finite Element Solution of Surface-Tension Driven Flows in Laser Surface-Melting,”Mechanics Research Communications, Vol. 22, pp. 297-304, 5// 1995.
70. O.-S. C. Team. (2012). Nanoscan - Common Causes of Damage to Scanheads & Reasons for out-of-Tolerance Conditions. Available: www.ophiropt.com/photonics
71. 范光照 及 張郭益,精密量測, 高立, 2005.
72. ISO, "4288: Geometrical Product Specifications (Gps)," in Surface texture: Profile method. Rules and procedures for the assessment of surface texture (ISO4288:1996), ed.
73. L. Mummery,Surface Texture Analysis: The Handbook, Hommelwerke GmbH, 1992.
74. L. JunChang, C. Langlade, and A. B. Vannes,“Evaluation of the Thermal Field Developed During Pulsed Laser Treatments: Semi Analytical Calculation,”Surface and Coatings Technology, Vol. 115, pp. 87-93, 6/15/ 1999.
75. E. Kannatey-Asibu,Principles of Laser Materials Processing, Wiley, 2009.
76. Comsol 4.3b Heat Transfer Module User’s Guide, Comsol Inc., 2013.
77. K. L. Johnson and K. K. L. Johnson,Contact Mechanics, Cambridge university press, 1987.
78. I. N. Sneddon,“The Relation between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile,”International Journal of Engineering Science, Vol. 3, pp. 47-57, 1965.
79. R. King,“Elastic Analysis of Some Punch Problems for a Layered Medium,”International Journal of Solids and Structures, Vol. 23, pp. 1657-1664, 1987.
80. S. C. Lim and M. F. Ashby,“Overview No. 55 Wear-Mechanism Maps,”Acta Metallurgica, Vol. 35, pp. 1-24, 1// 1987.
81. X. Jade, "Pattern Processing, Materials Data," ed: Inc, 1999.
82. A. Temmler, E. Willenborg, and K. Wissenbach,“Design Surfaces by Laser Remelting,”Physics Procedia, Vol. 12, Part A, pp. 419-430, // 2011.
83. T. Anthony and H. Cline,“Surface Rippling Induced by Surface‐Tension Gradients During Laser Surface Melting and Alloying,”Journal of Applied Physics, Vol. 48, pp. 3888-3894, 1977.
84. R. A. Fisher,“The Design of Experiments,”1935.
85. G. Taguchi,實驗計畫法: 上, 丸善, 1957.
86. L. China jiangyou longhai Special Steel Co. (2011). Data Table For:Tool Steel:Jis Skd61. Available: www.steelss.com
87. C. Multiphysics, "4.3 User’s Guide," ed: COMSOL, 2012.
88. C. Chan, J. Mazumder, and M. Chen,“A Two-Dimensional Transient Model for Convection in Laser Melted Pool,”Metallurgical Transactions A, Vol. 15, pp. 2175-2184, 1984.
89. T. Anthony and H. Cline,“Surface Rippling Induced by Surface‐Tension Gradients During Laser Surface Melting and Alloying,”Journal of Applied Physics, Vol. 48, pp. 3888-3894, 2008.
90. F. P. Incropera,Introduction to Heat Transfer, John Wiley & Sons, 2011.
91. B. Keene,“Review of Data for the Surface Tension of Pure Metals,”International Materials Reviews, Vol. 38, pp. 157-192, 1993.
92. F. E. Pfefferkorn, N. A. Duffie, X. Li, M. Vadali, and C. Ma,“Improving Surface Finish in Pulsed Laser Micro Polishing Using Thermocapillary Flow,”CIRP Annals-Manufacturing Technology, Vol. 62, pp. 203-206, 2013.