簡易檢索 / 詳目顯示

研究生: 洪菁蓬
Hung, Ching-Peng
論文名稱: 公共自行車租借系統之最佳租借站位址設置及車輛運補策略之研究
Optimal Station Allocation and Dynamic Bike Repositioning Strategies for Public Bike Sharing Systems
指導教授: 王逸琳
Wang, I-Lin
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 80
中文關鍵詞: 自行車租借系統位址設置問題隨機性節線長度車輛配置運補多元商品網路流量粒子群演算法
外文關鍵詞: Bike-sharing system, network design, dynamic bike repositioning, multi-commodity network flow, particle swarm optimization
相關次數: 點閱:101下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 公共自行車在世界各都會區逐漸成為熱門的短程接駁代步工具,成功的自行車租借系統必須在給定之地理範圍內決定合適的租借站位址與容量,並在營運期間做好車輛在不同時段於各站的配置與運補。為能更符合實際狀況,本研究一共分成兩個部分,首先為最佳租借站位址設置問題,在考量行人在各路段的行走或騎乘時間服從特定機率分配的情況下,據此發展出一套可處理隨機性節線長度之隨機性混整數規劃模式,經過進一步之推導後,模式可轉換成二次混整數規劃模式,接著再以兩類粒子群演算法以加速解得更合理的最佳租借站位址、容量及自行車配置方式。本論文之第二部分為自行車租借車輛配置運補問題,在保證租借者總旅行時間能滿足給定的服務水準假設下,我們依據不同程度的租借資訊,分別提出三種不同情境的最小成本多元商品網路流量模式來求解營運期間各站在各期應配置的自行車數及最小成本的運補方式,並發展粒子群演算法加速求解最佳的運補車路線。

    Recently, short-term bicycle rentals at a network of unmanned locations in metropolitan areas around the world become popular. A successful manager of a bike-sharing system has to decide suited location and capacity of a bike rental station, deploy the bike fleet, and conduct bike repositioning between stations in a way that minimizes the total cost while satisfying a given service level. This paper investigates two problems encountered in the design and management of urban public bike sharing systems. In order to better meet the real behavior of customers, the first network design problem considers different walking and riding time at every arc for different customer that obeys specific probability distribution. Based on the stochastic traveling time assumption, we propose a stochastic mixed integer model to decide the best station locations, capacity and amount of initial bicycles to be put for each station. We explain how to convert this problem as a Quadratic mixed integer program, which consumes much computational time by CPLEX. Then we propose two particle swarm optimization(PSO) algorithms to solve larger network design cases in shorter time.
    Our second problem deals with a dynamic bike repositioning problem. In particular, with guarantees on the number of customers to be served and their total travel time not exceeding a specified threshold, we provide three specialized minimum cost multi-commodity network flow formulations based on different levels of available rental information. We recommend using our third formulation that assumes the customers follow historical trend of traveling, and seek the best route and repositioning decisions for each transit vehicle that travels between stations to load or unload bikes. Due to the complexity of the MIP formulation, we propose PSO algorithms to deal with dynamic bike repositioning problems of larger scale.

    摘要 i Abstract ii 誌謝 v 表目錄 viii 圖目錄 ix 第一章緒論 1 1.1 研究背景 1 1.2 研究動機 3 1.3 研究目的 3 1.4 論文架構 5 第二章文獻探討 6 2.1 考慮隨機路徑長度之最佳租借站位址設置問題 7 2.1.1 影響站點考量因素 7 2.1.2 區位設施理論應用於運輸場站區位選擇文獻 9 2.2 具有不確定因子之路徑問題 11 2.3 粒子群演算法 12 2.4 自行車車輛運補策略之相關文獻 13 2.4.1 車輛途程問題 13 2.4.2 空櫃調度問題 15 2.4.3 租借系統車輛配置運補相關文獻. 17 2.5 小結 18 第三章考慮隨機路徑長度之最佳租借站位址設置問題 20 3.1 問題描述與假設 20 3.1.1 問題敘述 20 3.1.2 問題假設 21 3.2 隨機性混整數規劃模式 22 3.2.1 參數與變數定義 22 3.2.2 數學模式 24 3.2.3 隨機性混整數規劃模式延伸及推導 27 3.3 粒子群演算法求解租借站位址設置問題 28 3.4 隨機性混整數規劃模式範例 31 3.4.1 數據參數設定 31 3.4.2 測試結果 32 3.5 數值分析 35 3.5.1 網路圖之建立 35 3.5.2 數值分析 35 3.6 小結 39 第四章公共自行車租借車輛配置運補問題 41 4.1 車輛運補配置(GBRP) 42 4.1.1 問題敘述 42 4.1.2 問題假設 43 4.1.3 參數與變數定義 45 4.1.4 數學模式 47 4.2 固定租借站點之車輛運補問題(BRFT) 50 4.3 具比例分配之車輛運補問題(BRPF) 54 4.4 PSO演算法 57 4.4.1 粒子編碼及解碼方式 57 4.4.2 粒子適應函式 60 4.4.3 粒子更新 63 4.5 BRPF模式範例 63 4.6 數值分析 65 4.6.1 網路圖之建立 65 4.6.2 數值分析 66 4.7 小結 66 第五章結論與未來研究方向 71 5.1 結論與貢獻 71 5.2 其他延伸性發展方向 74 參考文獻 76

    Ai, J. and Kachitvichyanukul, V. A particle swarm optimization for the vehicle routing problem with simultaneous pickup and delivery. Computers and Operations Research, 36(5), 1693-1702, 2009.
    Aydin, M. E. and Fogarty, T. C. A distributed evolutionary simulated annealing algorithm for combinatorial optimisation problems. Journal of Heuristics, 10, 269-292, 2004.
    Bean, J. C., Higle, J. L. and Smith, R. L. Capacity expansion under stochastic demands. Operations Research, 40, 210-216, 1992.
    Benchimol, M., Benchimol, P., Chappert, B., Taille, A. D. l., Laroche, F., Meunier,
    F. and Robinet, L. 2011. Balancing the stations of a self-service“bike hire” system.
    Chang, L. C. 2010. Design and management of urban bike sharing systems. Thesis, National Cheng Kung University.
    Chaudhry, S. S., He, S. and Chaudhry, P. E. Solving a class of facility location problems using genetic algorithm. Expert Systems, 20, 86-91, 2003.
    Chemla, D., Meunier, F. and Calvo, R. W. 2009. Balancing a bike-sharing system with multiple vehicles.
    Dantzig, G. and Ramser, J. The truck dispatching problem. Management Science, 6(1), 80-91, 1959.
    Daskin, M. and Owen, S. Location models in transportation. Handbook of Transportation Science, 311–360, 1999. (Boston/Dordrecht/London: Kluwer Academic Publishers)
    DeMaio, P. Bike-sharing: History, impacts, models of provision, and future. Journal of Public Transportation, 14(4), 41-56, 2009.
    Demetsky, M. and Lin, B. B. M. Bus stop location and design. Transportation Engineering Journal of ASCE, 108, 313-327, 1982.
    Edelstein, M. and Melnyk, M. The pool control system. Interfaces, 8(1), 21-36, 1977.
    Ernst, A. T., Gavriliouk, E. O. and Marquez, L. An efficient lagrangean heuristic for rental vehicle scheduling. Computers and Operations Research, 38(1), 216-226, 2010.
    Federgruen, A. and Zipkin, P. A combined vehicle routing and inventory allocation problem. Operations Research, 32, 1019-1032., 1984.
    Fink, A. and Reiners, T. Modeling and solving the short-term car rental logistics problem. Transportation Research Part E: Logistics and Transportation Review, 42(4), 272 - 292, 2006.
    Guner, A. R. and Sevkli, M. A continuous particle swarm optimization algorithm for uncapacitated facility location problem. Ant Colony Optimization and Swarm, 4150, 316-323, 2006.
    Hsieh, T. F. 2010. Solving vehicle routing problem with stochastic demands by ant colony optimization algorithm - a case study of vending machine replenishment. Thesis, National Kaohsiung First University of Science and Technology.
    Kennedy, J. and Eberhart, R. Particle swarm optimization. IEEE International Conference on Neural Networks, 1942-1948, 1995.
    Laporte, G., Mesa, J. A. and Ortega, F. A. Optimization methods for the planning of rapid transit systems. European Journal of Operational Research, 122(1), 1-10, 2001.
    Levanova, T. and Loresh, M. Algorithms of ant system and simulated annealing for the p-median problem. Automation and Remote Control, 65, 431-438, 2004.
    Li, Z. and Tao, F. On determining optimal fleetsize and vehicle transfer policy for a car rental company. Computers and Operations Research, 37, 341-350, 2010.
    Lin, J. and Yang, T. Strategic design of public bicycle sharing systems with service level constraints. Transportation Research Part E: Logistics and Transportation Review, 2010.
    Lovsz, L. Energy of convex sets, shortest paths, and resistance. Journal of Combinatorial Theory A, 94, 363-382, 2001.
    Lyons, R., Pemantle, R. and Peres, Y. Resistance bounds for first-passage percolation and maximum flow. Journal of Combinatorial Theory A, 86, 158-168, 1999.
    Manne, A. S. Capacity expansion and probabilistic growth. Econometrica, 29, 632-649, 1961.
    Mohemmed, A. W., Sahoo, N. C. and Geok, T. K. Solving shortest path problem using particle swarm optimization. Applied Soft Computing, 8(4), 1643-1653, 2008.
    Murray, A. and Wu, X. Accessibility tradeoffs in public transit planning. Journal of Geographical Systems, 5(1), 93-107, 2003.
    Murray, A. T. Strategic analysis of public transport coverage. Socio-Economic Planning Sciences, 35(3), 175-188, 2001.
    Natarajan, K., Song, M. and Teo, C. P. Persistency model and its applications in choice modeling. Management Science, 55(3), 453-469, 2009.
    Pachon, J., Iakovou, E. and Chi, I. Vehicle fleet planning in the car rental industry. Journal of Revenue and Pricing Management, 5(3), 221-236, 2006.
    Pachon, J., Iakovou, E., Chi, I. and Aboudi, R. A synthesis of tactical fleet planning models for the car rental industry. IIE Transactions, 35(9), 907-916, 2003.
    Pongchairerks, P. and Kachitvichyanukul. V. a particle swarm optimization algorithm on job-shop scheduling problems with multi-purpose machines. Asia-Pacific Journal of Operational Research, 26(2), 161-184, 2009.
    Raviv, T., Tzur, M. and Forma, I. A. 2010. Static repositioning in a bike-sharing system: Models and solution approaches.
    Salhi, S. Defining tabu list size and aspiration criterion within tabu search methods. Computers and Operations, 29, 67-86, 2002.
    Shaheen, S. A., Guzman, S. and Zhang, H. Bikesharing in Europe, the americas, and asia: Past, present, and future. Transportation Research Board 89th Annual Meeting, 2010.
    Shintani, K., Imai, A., Nishimura, E. and Papadimitriou, S. The container shipping network design problem with empty container repositioning. Transportation Research Part E: Logistics and Transportation Review, 43(1), 39 - 59, 2007.
    Shu, J., Chou, M., Liu, Q., Teo, C. and Wang, I.-L. 2010. Bicycle-sharing system: deployment, utilization and the value of re-distribution.
    White, W. W. Dynamic transshipment networks: An algorithm and its application to the distribution of empty containers. Networks, 2(3), 211–236, 1972.
    Wu, L., Zhang, X. and Zhan, J. Capacitated facility location problem with general setup cost. Computers and Operations Research, 33(5), 1226-1241, 2006.
    Xu, H., Chen, Z. L., Rajagopal, S. and Arunapuram, S. Solving a practical pickup and delivery problem. Transportation Science, 37, 347-364, 2003.
    Yang, T. H., Lin, J. R. and Chang, Y. C. Strategic design of public bicycle sharing systems incorporating with bicycle stocks considerations. Proceeding of The 40th International Conference on Computers and Industrial Engineering, 25-28, 2010. (Awaji, Japan)

    下載圖示 校內:2016-08-30公開
    校外:2016-08-30公開
    QR CODE