簡易檢索 / 詳目顯示

研究生: 張虔祥
Chang, Chien-Hsiang
論文名稱: 應用於高齡失智症之智慧復健系統開發與使用性研究
Development and Usability Evaluation of Intelligent Rehabilitation System on Dementia for the Elderly
指導教授: 林彥呈
Lin, Yang-Cheng
學位類別: 博士
Doctor
系所名稱: 規劃與設計學院 - 工業設計學系
Department of Industrial Design
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 258
中文關鍵詞: 失智症多感官治療嚴肅遊戲穿戴式裝置智慧醫療
外文關鍵詞: Dementia, Multisensory Therapy, Serious Gaming, Wearable Devices, Smart Healthcare
相關次數: 點閱:77下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,全球失智症的罹患率呈逐年上升趨勢,特別是在新冠肺炎(COVID-19)疫情蔓延期間,因防疫措施限制高齡者外出活動,進一步導致其肌肉質量與功能退化加劇,進而提高罹患失智症的風險與病情惡化的速度。失智症為一種不可逆的神經退行性疾病,藥物治療難以根治,因此目前臨床上主要採取非藥物治療方式。其中,多感官治療在眾多非藥物介入手段中,逐漸展現其對失智症患者的潛在益處。然而,傳統的復健訓練多採用徒手操作與階段性多感官刺激方式,不僅難以有效評估訓練成效,重複且單一的訓練內容亦容易造成患者訓練動機降低。隨著醫療智慧化的發展,如何促進高齡者與其生活環境的良性互動,並避免因老化與疾病所帶來的功能喪失,已成為當前重要的社會議題。為回應此一需求,本研究開發一套「高齡失智症智慧復健系統」,旨在提供專業人員一項輔助性工具,以協助其準確地為高齡失智者設計合適的復健內容,進而延緩病程進展並提升患者生活品質。本研究透過使用性測試進行驗證,並以簡短智能量表(MMSE)篩選年齡60歲以上、輕度認知功能障礙者作為研究對象,以評估其對該系統的主觀使用體驗。最終,本系統導入至一般與失智症高齡者的實際照護場域進行臨床應用,同時探討其於人工智慧應用下之發展潛力與系統樣貌。本研究所開發之系統融合遊戲化設計與多感官訓練模式,能有效提升失智症高齡者的復健參與意願。研究發現,女性高齡者對新興科技產品的接受度較高,顯示智慧裝置可作為高齡者學習與進行復健訓練的新興工具。此外,系統中融入懷舊風格的遊戲內容,能引發高齡者的情感共鳴,進而提升其整體生活品質,並有助於穩定其情緒與集中注意力。綜合而言,本系統可作為臨床專業人員於實務工作上的有效工具,亦可協助評估個體罹患失智症之風險與提供後續復健建議,未來可作為我國高齡照護與智慧復健系統發展之參考應用。

    In recent years, the global prevalence of dementia has shown a continuous upward trend. Dementia is an irreversible neurodegenerative disease. Current clinical approaches primarily rely on non-pharmacological interventions. Among these, multisensory therapy has emerged as a promising method with potential benefits. However, conventional rehabilitation training often involves manual operations and phase-based multisensory stimulation, which present challenges in effectively assessing treatment outcomes. Additionally, repetitive and monotonous training content may diminish patients’ motivation to engage in therapy. The study developed an Intelligent Rehabilitation System for the elderly with Dementia, aiming to provide healthcare professionals with an assistive tool to design tailored rehabilitation programs for this population. The goal is to slow disease progression and enhance patients' quality of life. The system was validated through usability testing, targeting individuals aged 60 and above with mild cognitive impairment, as screened by the Mini-Mental State Examination (MMSE), to assess their subjective user experience. The system was ultimately deployed in real-world care settings for both general elderly populations and those with dementia, with clinical applications explored alongside its potential and design within the context of artificial intelligence technologies. The study indicated that older female participants demonstrated higher acceptance of emerging technological products, suggesting that smart devices may serve as novel tools for elderly rehabilitation and lifelong learning. Furthermore, incorporating nostalgic game elements into the system successfully elicited emotional resonance among older users, enhancing their overall quality of life while stabilizing emotions and improving attention focus. This system represents an effective tool for clinical professionals in practical settings and can be used as a valuable reference for the development of elderly care and intelligent rehabilitation technologies.

    摘要 ii ABSTRACT iii 誌謝 iv CONTENTS v LIST OF TABLES viii LIST OF FIGURES x LIST OF SYMBOLS AND ABBREVIATIONS xiv CHAPTER 1 INTRODUCTION 1 1.1 Research Background 2 1.2 Research Motivation 7 1.3 Research Purposes 10 1.4 Research Framework 15 CHAPTER 2 LITERATURE REVIEW 18 2.1 Dementia 18 2.1.1 The Correlation Between Dementia and Sarcopenia 19 2.1.2 Treatment Methods of Dementia 23 2.1.3 Integration of Multisensory Therapy into Dementia Treatment 25 2.1.4 Summary 28 2.2 Serious Game 29 2.2.1 Game Application in the Field of Rehabilitation 30 2.2.2 Reminiscence Therapy into Game Design 32 2.2.3 Interface Design and Principles for the Elderly 35 2.2.4 Summary 38 2.3 Smart Devices 39 2.3.1 Present and Future Development Trends of Wearable Devices 40 2.3.2 Application of Smart Devices for the Elderly 42 2.3.3 Design Elements of Smart Device Ergonomics 44 2.3.4 Summary 46 2.4 Artificial Intelligence 47 2.4.1 The Development Trend of Artificial Intelligence in Medical Care 48 2.4.2 Machine Learning Application in the Medical Field 49 2.4.3 Summary 51 CHAPTER 3 METHODS 53 3.1 Subjects 56 3.2 Phase 1 Study 58 3.2.1 Literature Analysis 58 3.2.2 Expert Interviews 59 3.3 Phase 2 Study 63 3.3.1 Software and Hardware System Construction 64 3.3.2 System Usability Experiment 79 3.4 Phase 3 Study 88 3.4.1 Clinical Validation 89 3.4.2 Build an Artificial Intelligence System 96 CHAPTER 4 RESULTS AND DISCUSSION 100 4.1 System Usability Scale Analysis 100 4.1.1 Phase 1 System Usability 101 4.1.2 Phase 2 System Usability 121 4.1.3 Qualitative Analysis 134 4.1.4 Summary 136 4.2 Clinical Validation of GTD 139 4.2.1 General Elderly Population 140 4.2.2 Elderly Population with Dementia 147 4.2.3 Comparative Analysis Between the General and Dementia Elderly Population 157 4.3 Machine Learning 161 4.3.1 Decision Tree, DT 163 4.3.2 Random Forest, RF 168 4.3.3 Support Vector Machine, SVM 173 4.3.4 K-Nearest Neighbor, KNN 178 4.3.5 Summary 183 CHAPTER 5 CONCLUSION 184 5.1 Research Results 184 5.2 Contribution 188 5.3 Limitation 189 5.4 Follow-Up Studies 191 5.5 Future Outlook 192 REFERENCES 193 APPENDIX A QUESTIONNAIRE 212 A.1 System Usability Scale Questionnaire 212 A.2 Quality of Life Questionnaire 214 A.3 Mini-Mental Status Examination Questionnaire 218 A.4 Expert Interview Questionnaire 222 A.5 Interviewee Questionnaire 224 APPENDIX B CLINICAL VALIDATION PHOTOS 226 B.1 The general elderly population 226 B.2 The elderly population with dementia 227 APPENDIX C HUMAN RESEARCH ETHICS EVIDENCE 228 APPENDIX D RECORD OF THE EXPERT INTERVIEW 229 D.1 Physiatrist-Dr. Lien 229 D2. Orthopedist-Dr. Yang 230 D3. Orthopedist-Dr. Wu 231 D4. Registered Nurse-Mrs. Liu 232 D5. Physiotherapist-Mr. Wang 233 APPENDIX E RECORD OF THE SEMI-STRUCTURED INTERVIEW 234 APPENDIX F MACHINE LEARNING OF FEATURE ANALYSIS 240

    ADI (2023). Taiwan Dementia Population Projections. http://www.tada2002.org.tw/About/IsntDementia
    Alfini, A. J., Weiss, L. R., Nielson, K. A., Verber, M. D., & Smith, J. C. (2019). Resting Cerebral Blood Flow after Exercise Training in Mild Cognitive Impairment. Journal of Alzheimer's Disease, 67(2), 671-684.
    Alfonso, J., Gülistan, C. J., Jürgen, B., Yves, B., Olivier, B., Tommy, B., Cyrus, C., Francesco, C., Yves, L., Avan, R., Stéphane, A. S., Cornel, M. S., Eva, C. S., Maurits, T., Marjolein, V., & Mauro, Z. (2019). Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age and Ageing, 48,16-31.
    Amato, F., Balzano, W., & Cozzolino, G. (2022). Design of a Wearable Healthcare Emergency Detection Device for Elder Persons. Applied Sciences, 12(5), 2345.
    Armitage, R., & Nellums, L. B. (2020). COVID-19 and the Consequences of Isolating the Elderly. Correspondence, 5(5), 256.
    Arvanitakis, Z., Shah, R. C., & Bennett, D. A. (2019). Diagnosis and Management of Dementia: A Review. JAMA, 322(16), 1589-1599.
    Asano, T., Wang, C. W., Tsugaruya, M., & Ishikawa, T. (2020). Effectiveness of High-Frequency Individual Reminiscence Interventions Using Life Story Books on Persons with Dementia. British Journal of Occupational Therapy, 84(5), 317-326.
    Avcil, E., Tarakci, D., Arman, N., & Tarakci, E. (2021). Upper Extremity Rehabilitation Using Video Game in Cerebral Palsy: a Randomized Clinical Trial. Acta Neurologica Belgica, 121(4), 1053-1060.
    Basu, A., Sinha, R., Ong, A., & Basu, T. (2020). Artificial Intelligence: How is It Changing Medical Sciences and Its Future? Indian Journal of Dermatology, 65(5), 365-370.
    Bauer, M., Rayner, J. A., Koch, S., & Chenco, C. (2012). The Use of Multi-Sensory Interventions to Manage Dementia-Related Behaviours in the Residential Aged Care Setting: A Survey of One Australian State. Journal of Clinical Nursing, 21(21-22):3061-9. doi: 10.1111/j.1365-2702.2012.04306.x.
    Beam, A.L., and Kohane, I.S. (2018).Big Data and Machine Learning in Health Care. JAMA, 319(13):1317-1318. doi: 10.1001/jama.2017.18391.
    Bharathi, A. R. (2021). Evaluate the Effectiveness of Reminiscence Therapy. Journal of Pharmaceutical Research International, 33(46A), 447-452.
    Brenowitz, W. D., Kaup, A. R., & Yaffe, K. (2020). Incident Dementia and Faster Rates of Cognitive Decline are Associated with Worse Multisensory Function Summary Scores. Alzheimer’s & Dementia, 16(10), 1384-1392. doi: 10.1002/alz.12134.
    Brenowitz, W. D., Kaup, A. R., Lin, F. R., & Yaffe, K. (2018). Multiple Sensory Impairment Is Associated with Increased Risk of Dementia Among Black and White Older Adults. J Gerontol A Biol Sci Med Sci., 74(6), 890-896. doi: 10.1093/gerona/gly264.
    Bristot, V. J. D. O., Alves, A. C. D. B., Cardoso, L. R., Scheffer, D. L., & Aguiar, A. S. (2019). The Role of PGC-1α/UCP2 Signaling in the Beneficial Effects of Physical Exercise on the Brain. Frontiers in Neuroscience, 13:292. doi: 10.3389/fnins.2019.00292.
    Brooke, J. (1996). SUS: A “Quick and Dirty” Usability Scale. In Usability Evaluation in Industry, Edited by: Jordan, P. W., Thomas, B. A. Weerdmeester and McClelland, I. L. 189–194. London: Taylor & Francis.
    Burley, C. V., Burns, K., Lam, B. C. P., & Brodaty, H. (2022). Nonpharmacological Approaches Reduce Symptoms of Depression in Dementia: A Systematic Review and Meta-Analysis. Ageing Research Review, 79(9789):101669. doi: 10.1016/j.arr.2022.101669.
    Buyle, M., Jung, Y., Pavlou, M., Gonzalez, S. C., & Bamiou, D. E. (2022). The Role of Motivation Factors in Exergame Interventions for Fall Prevention in Older Adults: A Systematic Review and Meta-Analysis. Frontiers in Neurology, 13:903673. doi: 10.3389/fneur.2022.903673.
    Castilla, D., Suso-Ribera, C., Zaragoza, I., Garcia-Palacios, A. & Botella, C. (2020). Designing ICTs for Users with Mild Cognitive Impairment: A Usability Study. International Journal of Environmental Research and Public Health, 17(14):5153. doi: 10.3390/ijerph17145153.
    Cerami, C., Perini, G., Panzavolta, A., Ramusino, M. C. & Costa, A. (2022). A Call for Drug Therapies for the Treatment of Social Behavior Disorders in Dementia: Systematic Review of Evidence and State of the Art. International Journal of Molecular Sciences, 23(19):11550. doi: 10.3390/ijms231911550.
    Chan, H. S., Chu, H. Y., & Chen M. F. (2022). Effect of Horticultural Activities on Quality of Life, Perceived Stress, and Working Memory of Community-Dwelling Older Adults. Geriatric Nursing, 48:303-314. doi: 10.1016/j.gerinurse.2022.10.016.
    Chang, C. H., Yeh, C. H., Chang, C.C., & Lin, Y. C. (2022). Interactive Somatosensory Games in Rehabilitation Training for Older Adults With Mild Cognitive Impairment: Usability Study. JMIR Serious Games, 10(3):e38465. doi: 10.2196/38465.
    Cheng, C., Baker, G. B. & Dursun, S. M. (2019). Use of Multisensory Simulation Interventions in the Treatment of Major Neurocognitive Disorders. Psychiatry and Clinical Psychopharmacology, 29(4) , 916-921.
    Chiu, M. C., Huang, P. H. & Tsao, S. H. (2019). Redesigning the User Interface of a Healthcare Management System for the Elderly with a Systematic Usability Testing Method. Journal of Industrial and Production Engineering, 36(5), 324-334.
    Cipolli, G. C., Yassuda, M. S., & Aprahamian, I. (2019). Sarcopenia is Associated with Cognitive Impairment in Older Adults: A Systematic Review and Meta-Analysis. The Journal of Nutrition, Health & Aging, 23(6):525-531. doi: 10.1007/s12603-019-1188-8.
    Clarkson, P. J., & Coleman, R. (2015). History of Inclusive Design in the UK. Applied Ergonomics, 46 Pt B:235-47. doi: 10.1016/j.apergo.2013.03.002.
    Collier, L. & Jakob, A. (2017). The Multisensory Environment (MSE) in Dementia Care: Examining Its Role and Quality from a User Perspective. Herd-Health environments Research & Design Journal, 10(5):39-51. doi: 10.1177/1937586716683508.
    Connolly, T. M., Boyle, E. A., MacArthur, E., Hainey, T., & Boyle, J. M. (2012). A Systematic Literature Review of Empirical Evidence on Computer Game and Serious Game. Computer & Education, 59(2), 661-686.
    Cornet, G. (2013). Robot Companions and Ethics: A Pragmatic Approach of Ethical Design. Journal International de Bioethique, 24(4):49-58, 179-80. doi: 10.3917/jib.243.0049. 24, 49-58.
    Corrada, M. M., Brookmeyer, R., Paganini-Hill, A., Berlau, D., & Kawas, C. H. (2010). Dementia Incidence Continues to Increase with Age in the Oldest Old: the 90+ Study. Ann Neurol, 67(1):114-21. doi: 10.1002/ana.21915.
    Cruz-Jentoft, A. J., Bahat, G., Bauer, J., Boirie, Y., Bruyère, O., Cederholm, T., Cooper, C., Landi, F., Rolland, Y., Sayer, A. A., Schneider, S. M., Sieber, C. C., Topinkova, E., Vandewoude, M., Visser, M., & Zamboni, M. (2018). Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age and Ageing, 48(1), 16-31. doi: 10.1093/ageing/afy169.
    Dai, B., Gao, C., & Xie, Y. (2022). Flexible Wearable Device for Intelligent Health Monitoring. Special Issue: Skin-like Devices enabling Advanced Healthcare, 3(5). doi: 10.1002/viw.20220027.
    Demers, M., Martinie, O., Winstein, C., & Robert, M. T. (2020). Active Video Games and Low- Cost Virtual Reality: An Ideal Therapeutic Modality for Children with Physical Disabilities During a Global Pandemic. Frontiers in Neurology, 11:601898. doi: 10.3389/fneur.2020.601898.
    Dong, M., Fang, B., Li, J., Sun, F., & Liu, H. (2020). Wearable Sensing Devices for Upper Limbs: A Systematic Review. SAGE Journal, 235(1). doi: 10.1177/0954411920953031.
    Dunn, J., Runge, R., & Snyder, M. (2018). Wearables and the Medical Revolution. Personalized Medicine, 15(5):429-448. doi: 10.2217/pme-2018-0044.
    Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, D., Chou, K., Cui, C., Corrado, G., Thrun, S., & Dean, J. (2019). A Guide to Deep Learning in Healthcare. Nature Medicine, 25(1):24-29. doi: 10.1038/s41591-018-0316-z.
    Fedwa, L., Mohamad, E. & Abdulmotaleb, E. S. (2014). An Overview of Serious Games. International Journal of Computer Games Technology, 2014(3). doi: 10.1155/2014/358152.
    Firouzi, F., Rahmani, A. M., Mankodiya, K., Badaroglu, M., Merrett, G. V., Wong, P., & Farahani, B. (2018). Internet-of-Things and Big Data for Smarter Healthcare: From Device to Architecture, Applications and Analytics. Future Generation Computer Systems, 78(2), 583-586.
    Gentry, S. V., Gauthier, A., Ehrstrom, B. L., Wortley, D., Lilienthal, A., Car, L. T., Daaauewls-Okutus, S., Nikolaou, C. K., Zary, N., Campbell, J., & Car, J. (2019). Serious Gaming and Gamification Education in Health Professions: Systematic Review. Journal of Medical Internet Research, 21(3): e12994. doi: 10.2196/12994.
    Gomez, C., Poza, J., Gutierrez, M. T., Prada, E., Mendoza, N., & Hornero, R. (2016). Characterization of EEG Patterns in Brain-Injured Subjects and Controls after a Snoezelen Intervention. Computer Methods Programs Biomed, 136:1-9. doi: 10.1016/j.cmpb.2016.08.008.
    Grand View Research (2023). Wearable Technology Market Size, Share & Trends Analysis Report by Product (Head & Eyewear, Wristwear), by Application (Consumer Electronics, Healthcare), by Region (Asia Pacific, Europe), And Segment Forecasts, 2023 – 2030. Resource: https://www.grandviewresearch.com/industry-analysis/wearable-technology-market#.
    Grande, G., Triolo, F., Nuara, A., Welmer, A. K., Fratiglioni, L., & Vetrano, D. L., (2019). Measuring Gait Speed to Better Identify Prodromal Dementia. Experimental Gerontology, 124:110625. doi: 10.1016/j.exger.2019.05.014.
    Grilli, M. D., Wank, A. A., Bercel, J. J., & Ryan, L. (2018). Evidence for Reduced Autobiographical Memory Episodic Specificity in Cognitively Normal Middle-Aged and Older Individuals at Increased Risk for Alzheimer’s Disease Dementia. Journal of the International Neuropsychological Society, 24(10):1073-1083. doi: 10.1017/S1355617718000577.
    Guitton, M. J. (2021). Something Good Out of Something Bad: eHealth and Telemedicine in the Post-COVID era. Computers in Human Behavior, 123:106882. doi: 10.1016/j.chb.2021.106882.
    Gupta, S., & Micheisen-Jost, H. (2012). Anatomy and Function of the Thenar Muscles. Hand Clinics, 28(1):1-7. doi: 10.1016/j.hcl.2011.09.006.
    Hamet, P. & Tremblay, J. (2017). Artificial Intelligence in Medicine. Metabolism, 69, S36-S40.
    Harte, R. P., Glynn, L. G., Broderick, B. J., Rodriguez-Molinero, A., Baker, P. M., McGuiness, B., O’Sullivan, L., Diaz, M., Quinlan, L. R. & OLaighin, G. (2014). Human Centered Design Considerations for Connected Health Devices for the Older Adult. Journal of Personalized Medicine, 4(2), 245-281.
    Hartskamp, M. V., Consoli, S., Verhaegh, W., Petkovic, M. & Stolpe, A. Z. D. (2019). Artificial Intelligence in Clinical Health Care Applications: Viewpoint. Interactive Journal of Medical Research, 8(2), e12100.
    Harvey, L., Mitchell, R., Brodaty, H., Draper, B., & Close, J. (2016). Differing Trends in Fall-Related Fracture and Non-Fracture Injuries in Older People with and Without Dementia. Archives of Gerontology and Geriatrics, 67:61-7. doi: 10.1016/j.archger.2016.06.014.
    Hatabe, Y., Shibata, M., Ohara, T., Oishi, E., Yoshida, D., Honda, T., Hata, J., Kanba, S., Kitazono, T., & Ninomiya, T. (2020). Decline in Handgrip Strength from Midlife to Late-Life is Associated with Dementia in a Japanese Community: The Hisayama Study. Journal of Epidemiology, 30(1):15-23. doi: 10.2188/jea.JE20180137.
    Hitchcock, C., Werner-Seidler, A., Blackwell, S. E., & Dalgleish, T. (2017). Autobiographical Episodic Memory-Based Training for the Treatment of Mood, Anxiety and Stress-Related Disorders: A Systematic Review and Meta-Analysis. Go to Clinical Psychology Review on Science Direct, 52:92-107. doi: 10.1016/j.cpr.2016.12.003.
    Hou, Y., Dan, X., Babbar, M., Wei, Y., Hasselbalch, S. G., Croteau, D. L., & Bohr, V. A. (2019). Ageing as a Risk Factor for Neurodegenerative Disease. Nature Reviews Neurology, 15(10):565-581. doi: 10.1038/s41582-019-0244-7.
    Huang, L. C., & Yang, Y. H. (2022). The Long-Term Effects of Immersive Virtual Reality Reminiscence in People with Dementia: Longitudinal Observational Study. JMIR Serious Games, 10(3): e36720. doi: 10.2196/36720.
    Huang, L. K., Chiu, P. Y., Chang, Y. T., Jhang, K. M., Chen, C. S., Chao, S. P., Lin, C. P., Chang W. H., Hong, W. P., Huang, M. F., Lu, C. H., Lee, Y. T., Hung, C. H., Liu, C. K., Lin, W., Chang, C. C., Hu, C. J., & Pai, M. C. (2021). Taiwan Dementia Treatment Guideline. International Journal of Gerontology, 15(4), 292-300.
    IDTechEX (2021). Wearable Technology Market Size, Share & Trends Analysis Report By Product (Head & Eyewear, Wristwear), By Application (Consumer Electronics, Healthcare), By Region (Asia Pacific, Europe), And Segment Forecasts, 2023-2030. Resource: https://www.grandviewresearch.com/industry-analysis/wearable-technology-market
    Jack, C. R., Bennett, D. A., Blennow, K., Carrillo, M. C., Dunn, B., Haeberlein, S. B., ... & Liu, E. (2018). NIA-AA Research Framework: Toward a Biological Definition of Alzheimer's disease. Alzheimer's & Dementia, 14(4):535-562. doi: 10.1016/j.jalz.2018.02.018.
    James, E. (2019). Wearable Devices for Cardiac Rhythm Diagnosis and Management. JAMA, 321(4):337-338. doi: 10.1001/jama.2018.20437.
    Jo, D., Yoon, G., Kim, O. Y., & Song, J. (2022). A New Paradigm in Sarcopenia: Cognitive Impairment Caused by Imbalanced Myokine Secretion and Vascular Dysfunction. Biomedicine & Pharmacotherapy, 147:112636. doi: 10.1016/j.biopha.2022.112636.
    Johnson, K.W., Soto, J.T., Glicksberg, B. S., Shameer, K., Miotto, R., Ali, M., Ashley, E., & Dudley, J. T. (2018). Artificial Intelligence in Cardiology. Journal of the American college of cardiology, 71(23):2668-2679. doi: 10.1016/j.jacc.2018.03.521.
    Jonathan, M., Jonathan, L., Elena, D. A., Paul, W., Alophonsus, K., Deirdre, O. B., Andrea, D. F., Orazio, M., Raif, F., Roberta, A., & Luigia, S. S. (2019). An Approach to Evaluating the User Experience of Serious Games. Computer & Education, 136, 141-151. doi: 10.1016/j.compedu.2019.04.006.
    Jose, M. F., Lei, Y., Patricia, A. B., Sue, L., Rai, C. S., Julie A. S., & David, A. B. (2019). Alzheimer’s Disease Frequency Peaks in the Tenth Decade and is Lower Afterwards. Acta Neuropathologica Communications, 7(1):104. doi: 10.1186/s40478-019-0752-0.
    Kaplan, T., & Keser, I. (2021). The Effect of Individual Reminiscence Therapy on Adaptation Difficulties of the Elderly: a Randomized Clinical Trial. The Offical Journal of the Japanese Psychogeriatric Society, 21(6):869-880. doi: 10.1111/psyg.12761.
    Khait, A. A., & Shelman, J. (2020). Reminiscence in the Care of People with Mild Dementia: A Concept Analysis. Nursing Forum an Independent Voice for Nursing, 55(2):282-293. doi: 10.1111/nuf.12427.
    Khait, A. A., Reagan, L., & Shellman, J. (2021). Uses of Reminiscence Intervention to Address the Behavioral and Psychosocial Problems Associated with Dementia: An Integrative Review. Geriatric Nursing, 42(3):756-766. doi: 10.1016/j.gerinurse.2021.03.021.
    King, S. W., Eltayeb, M., van Duren, B. H., Jain, S., Kerry, J., Pandit, H. G., & Palan, J. (2022). Wearable Sensors to Guide Remote Rehabilitation Following Knee Arthroplasty Surgery. Indian Journal of Orthopaedics, 57(5):624-634. doi: 10.1007/s43465-022-00785-3.
    Kononova, A., Li, L., Kamp, K., Bowen, M., Rikard, R. V., Cotton, S., & Peng, W. (2019). The Use of Wearable Activity Trackers Among Older Adults: Focus Group Study of Tracker Perceptions, Motivators, and Barriers in the Maintenance Stage of Behavior Change. JMIR mHealth and uHealth, 7(4): e9832. doi: 10.2196/mhealth.9832.
    Labott, B. K., Bucht, H., Morat, M., Morat, T., & Donath, L. (2019). Effects of Exercise Training on Handgrip Strength in Older Adults: A Meta-Analytical Review. Karger Journal, 65(6):686-698. doi: 10.1159/000501203.
    Larsson, L., Degens, H., Li, M., Salviati, L., Lee, Y., Thompson, W., Kirkland, J. L. & Sandri, M. (2019). Sarcopenia: Aging-Related Loss of Muscle Mass and Function. Physiological Reviews, 99(1):427-511. doi: 10.1152/physrev.00061.2017
    Li, B., Tang, H., He, G., Jin, Z., He, Y., Huang, P., He, N., & Chen, S. (2022). Tai Chi Enhances Cognitive Training Effects on Delaying Cognitive Decline in Mild Cognitive Impairment. Alzheimer’s & Dementia, 19(1):136-149. doi: 10.1002/alz.12658.
    Li, Q. C., & Luximon, Y. (2020). Older Adult’s Use of Mobile Device: Usability Challenges While Navigating Various Interfaces. Behaviour & Information Technology, 39(8), 837-861.
    Li, R., Yang, Y., Wu, S., Huang, K., Chen, W., Liu, Y., & Lin, H. (2020). Using Artificial Intelligence to Improve Medical Services in China. Annals of Translational Medicine, 8(11). doi: 10.21037/atm.2019.11.108.
    Liao, Y., & Vemuri, V. R. (2002). Use of K-Nearest Neighbor Classifier for Intrusion Detection. Computers & Security, 21(5), 439-448.
    Lim, W. S., Liang, C. K., Assantachai, P., Auyeung, T. W., Kang, L., Lee, W. J., Lim, J. Y., Sugimoto, K., Akishita, M., Chia, S. L., Chou, M. Y., Ding, Y. Y., Iijima, K., Jang, H. C., Kawashima, S., Kim, M., Kojima, T., Kuzuya, M., Lee, J., Lee, S. Y., Lee, Y., Peng, L. N., Wang, N. Y., Wang, Y. W., Won, C. W., Woo, J., Chen, L. K., & Arai, H. (2020). COVID‐19 and Older People in Asia: Asian Working Group for Sarcopenia Calls to Action. Trusted Evidence Informed Decisions, 20(6):547-558. doi: 10.1111/ggi.13939.
    Lin, C. S. (2025). Three Basic Concepts of Regression Analysis. https://sites.google.com/site/chiashulab/lecture_materials11
    Lin, Y. F., Liu, M. F., Ho, M. H., Lin, Y. K., Hsiao, Y. L., Wang, M. H., Chang, C. C., & Montayre, J. (2022). A Pilot Study of Interactive-Video Game in People with Mild Cognitive Impairment. International Journal of Environmental Research and Public Health, 19(6):3536. doi: 10.3390/ijerph19063536.
    Lin, Y. S., Lin, F. Y., & Hsiao, Y. H., Alfini, A. J., Weiss, L. R., Nielson, K. A., Verber, M. D., & Smith, J. C. (2019). Resting Cerebral Blood Flow after Exercise Training in Mild Cognitive Impairment. Journal of Alzheimer's Disease, 67(2):671-684. doi: 10.3233/JAD-180728.
    Lin, Y. Y., Yao, C. T., Lin, T. Y., & Li, C. H. (2022). A Study of Reminiscence Activities Program on Dementia Behavioral Problems Care for Long-Term Care Older Adults in Taiwan. Educational Gerontology, 48(12), 598-609.
    Liu, N., Yin, J., Tan, S. S. L., Ngiam, K. Y., & Teo, H. H. (2021). Mobile Health Applications for Older Adults: A Systematic Review of Interface and Persuasive Feature Design. Journal of the American Medical Informatics Association, 28(11), 2483-2501.
    Livingston, G., Huntley, J., Sommerlad, A., Ames, D., Ballard, C., Banerjee, S., Brayne, C., Burns, A., Cohen-Mansfield, J., Cooper, C., Costafreda, S. G., Dias, A., Fox, N., Gitlin, L. N., Howard, R., Kales, H. C., Kivimaki, M., Larson, E. B., Ogunniyi, A., Orgta, V., & Mukadam, N. (2020). Dementia Prevention Intervention, and Care:2020 Report of the Lancet Commission. The Lancet, 396(10248):413-446. doi: 10.1016/S0140-6736(20)30367-6.
    Lok, N., Bademli, K., & Selcuk-Tosun, A. (2019). The Effect of Reminiscence Therapy on Cognitive Functions, Depression, and Quality of Life in Alzheimer Patients: Randomized Controlled Trial. International Journal of Geriatric Psychiatry, 34(1):47-53. doi: 10.1002/gps.4980.
    Loprinzi, P. D., Blough, J., Ryu, S. & Kang, M. (2019). Experimental effects of exercise on memory function among mild cognitive impairment: systematic review and meta-analysis. Physician and Sportsmedicine, 47(1):21-26. doi: 10.1080/00913847.2018.1527647.
    Lorkowski, J., Grzegorowska, O., & Pokorski, M. (2021). Artificial Intelligence in the Healthcare System: An Overview. Best Practice in Health Care, 1335:1-10. doi: 10.1007/5584_2021_620.
    Lorusso, L. N., & Bosch, S. J. (2018). Impact of Multisensory Environments on Behavior for People with Dementia: A Systematic Literature Review. The Gerontologist, 58(3): e168-e179. doi: 10.1093/geront/gnw168.
    Lu, L., Zhang, J., Xie, Y., Gao, F., Xu, S., Wu, X., & Ye, Z. (2020). Wearable Health Devices in Health Care: Narrative Systematic Review. JMIR mHealth and uHealth, 8(11): e18907. doi: 10.2196/18907.
    Malhotra, R., Tareque, M. I., Tan, N. C., & Ma, S. (2019). Association of Baseline Hand Grip Strength and Annual Change in Hand Grip Strength with Mortality Among Older People. Archives of Gerontology and Geriatrics, 86:103961. doi: 10.1016/j.archger.2019.103961.
    Manavalan, B., Shin, T.H., & Lee, G. (2018). PVP-SVM: Sequence-Based Prediction of Phage Virion Proteins Using a Support Vector Machine. Microbiol, 9:476. doi: 10.3389/fmicb.2018.00476.
    Mannini, A., Trojaniello, D., Cereatti, A., & Sabatini, A. M. (2016). A Machine Learning Framework for Gait Classification Using Inertial Sensors: Application to Elderly, Post-Stroke and Huntington’s Disease Patients. Sensors, 16(1):134. doi: 10.3390/s16010134.
    Maresova, P., Krejcar, O., Barakovic, S., Husic, J. B., Lameski, P., Zdravevski, E., Chorbev, I.,& Trajkovik, V. (2020). Health-Related ICT Solutions of Smart Environments for Elderly-Systematic Review. IEEE Access, 8, 54574-54600.
    Maseda, A., Cibeira, N., Lorenzo-Lopez, Laura, Gonzalez-Abraldes, L., Bujan, A., de Labra, C., Millan-Calenti, J. C. (2018). Multisensory Stimulation and Individualized Music Sessions on Older Adults with Severe Dementia: Effects on Mood, Behavior, and Biomedical Parameters. Journal of Alzheimer’s Disease, 63(4):1415-1425. doi: 10.3233/JAD-180109.
    Maseda, A., Sanchez, A., Marante, M. P., Gonzalez-Abraldes, L., Labra, C. D., & Millan-Calenti, J. C. (2014). Multisensory Stimulation on Mood, Behavior, and Biomedical Parameters in People with Dementia: is it More Effective than Conventional One-To-One Stimulation? American Journal of Alzheimer’s Disease and other Dementias, 29(7):637-47. doi: 10.1177/1533317514532823.
    Mattap, S. M., Mohan, D., McGrattan, A. M., Allotey, P., Stephan, B. C. M., Reidpath, D. D., Siervo, M., Robinson, L., & Chaiyakunapruk, N. (2022). The Economic Burden of Dementia in Low- and Middle-Income Countries(LMICs): a Systematic Review. BMJ Global Health, 7(4):e007409. doi: 10.1136/bmjgh-2021-007409.
    Merkin, A., Krishnamurthi, R., & Medvedev, O. N. (2022). Machine Learning, Artificial Intelligence and the Prediction of Dementia. Current Opinion in Psychiatry, 35(2):123-129. doi: 10.1097/YCO.0000000000000768.
    Miji, K. & Chang, W. W. (2019). Sarcopenia Is Associated with Cognitive Impairment Mainly Due to Slow Gait Speed: Results from the Korean Frailty and Aging Cohort Study (KFACS). International Journal of Environmental Research and Public Health, 16(9):1491. doi: 10.3390/ijerph16091491.
    Moon, S., & Park, K. (2020). The Effect of Digital Reminiscence Therapy on People with Dementia: A Pilot Randomized Controlled Trial. Moon and Park BMC Geriatrics, 20(1):166. doi: 10.1186/s12877-020-01563-2.
    Moore, K., O’Shea, E., Kenny, L., Barton, J., Tedesco, S., Sica, M., Crowe, C., Alamaki, A., Condell, J., Nordstrom, A., & Timmons, S. (2021). Older Adults' Experiences with Using Wearable Devices: Qualitative Systematic Review and Meta-synthesis. JMIR mHealth and uHealth, 9(6): e23832. doi: 10.2196/23832.
    Motti, V. G., & Caine, K. (2014). Human Factors Considerations in the Design of Wearable Devices. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 58(1), 1820-1824. doi:10.1177/1541931214581381.
    Nagappan, A., Krasniansky, A., & Knowles, M. (2024). Patterns of Ownership and Usage of Wearable Devices in the United States, 2020-2022: Survey Study. J Med Internet Res, 26: e56504. doi: 10.2196/56504.
    National Development Council (2023). Population Projections of Taiwan (2022 to 2070). https://www.ndc.gov.tw/Content_List.aspx?n=81ECE65E0F82773F
    Nielsen, J. (1996). Usability Metrics: Tracking Interface Improvements. IEEE software, 13(6), 1-2.
    Olazaran, J., Reisberg, B., Clare, L., Cruz, I., Pena-Casanova, J., Ser, T. D., Woods, B., Beck, C., Auer, S., Lai, C., Spector, A., Fazio, S., Bond, J., Kivipelto, M., Brodaty, H., Rojo, J. M., Collins, H., Teri, L., Mittelman, M., Orrell, M., Feldman, H. H., & Muniz, R. (2010). Nonpharmacological therapies in Alzheimer's disease: a systematic review of efficacy. Dementia and Geriatric Cognitive Disorders, 30(2):161-78. doi: 10.1159/000316119.
    Ong, D. S. M., Weibin, M. Z., Vallabhajosyula, R. (2021). Serious Games as Rehabilitation Tools in Neurological Conditions: A Comprehensive Review. Technology and Health Care : Official Journal of the European Society for Engineering and Medicine, 29(1):15-31. doi: 10.3233/THC-202333.
    Orchard, S. G., Polekfina, G., Ryan, J., Shah, R. C., Storey, E., Chong, T. T. J., Lockery, J. E. et al. (2022). Combination of Gait Speed and Grip Strength to Predict Cognitive Decline and Dementia. Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring, 14(1): e12353. doi: 10.1002/dad2.12353.
    Orgeta, V., Leung, P., dwl-Pino-Casado, R., Qazi, A., Orrell, M., Spestor, A. E., & Methley, A. M. (2022). Psychological Treatments for Depression and Anxiety in Dementia and Mild Cognitive Impairment. Cochrane Database of Syst Rev, 4(4):CD009125. doi: 10.1002/14651858.CD009125.pub3.
    Pandey, H., & Swain, R. (2020). Rehabilitation Equipment Market. Global Market Insights,256.
    Parisi, A., Bellinzona, F., Lernia, D. D., Repetto, C., Gaspari, S. D., Brizzi, G., Riva, G., & Tuena, C. (2022). Efficacy of Multisensory Technology in Post-Stroke Cognitive Rehabilitation: A Systematic Review. Journal of Clinical Medicine, 11(21):6324. doi: 10.3390/jcm11216324.
    Park, C. W., Seo, S. W., Kang, N., Ko, B., Choi, B. W., Park, C., Chang, D. K., Kim, H., Kim, H., Lee, H., Jang, J., Ye, J. C., Jeon, J. H., Seo, J. B., Kim, K. J., Jung, K. H., Kim, N., Paek, S., Shin, S. Y., Yoo, S., Choi, Y. S., Kim, Y., & Yoon, H. J. (2020). Artificial Intelligence in Health Care: Current Applications and Issues. Journal of Korean Medical Science, 35(42): e379. doi: 10.3346/jkms.2020.35.e379.
    Park, H., Pei, J., Shi, M., Xu, Q., & Fan, J. (2019). Designing Wearable Computing Devices for Improved Comfort and User Acceptance. Ergonomics, 62(11):1474-1484. doi: 10.1080/00140139.2019.1657184.
    Peek, S. T. M., Wouters, E. J. M., Hoof, J. V., Luijkx, K. G., Boeije, H. R., & Vrijhoef, H. J. M. (2014). Factors Influencing Acceptance of Technology for Aging in Place: A Systematic Review. International Journal of Medical Informatics, 83(4):235-48. doi: 10.1016/j.ijmedinf.2014.01.004.
    Perrochon, A., Borel, B., Istrate, D., Compagnat, M., & Daciet, J. C. (2019). Exercise-Based Games Interventions at Home in Individuals with a Neurological Disease: A Systematic Review and Meta-Analysis. Annals of Physical and Rehabilitation Medicine, 62(5):366-378. doi: 10.1016/j.rehab.2019.04.004.
    Pinto, J. O., Dores, A. R., Geraldo, A., Peixoto, B., & Barbosa, F. (2020). Sensory Stimulation Programs in Dementia: A Systematic Review of Methods and Effectiveness. Expert Review of Neurotherapeutics, 20(12):1229-1247. doi: 10.1080/14737175.2020.1825942.
    Randriambelonoro, M., Perrin, G., Blocquet, A., Kozak, D., Fernandez, J. T., Marfaing, T., Bolomey, E., Benhissen, Z., Frangos, E., Geissbuhler, A., & Graf, C. (2020). Hospital-to-Home Transition for Older Patients: Using Serious Game to Improve the Motivation for Rehabilitation – a Qualitative Study. Journal of Population Ageing, 13, 187-205.
    Rasing, N. L., Janus, S. I. M., Kreutz, G., Sveinsdttir, V., Gold C., Nater, U. M.,& Zuidema, S. U. (2022). The Impact of Music on Stress Biomarkers: Protocol of a Substudy of the Cluster-Randomized Controlled Trial Music Interventions for Dementia and Depression in Elderly Care. Brian Science, 12(4):485. doi: 10.3390/brainsci12040485.
    Redulla, R. (2020). Reminiscence Therapy for Dementia. Issues in Mental Health Nursing, 41(3), 265-266.
    Rodríguez-Almendros, M. L., Rodríguez-Fórtiz, M. J., Hornos, M. J., Samos-Jiménez, J., Rodríguez-Domínguez, C., & Rute-Pérez, S. (2020). Design Guide and Usability Questionnaire to Develop and Assess VIRTRAEL, a Web-Based Cognitive Training Tool for the Elderly. Behaviour & Information Technology, 40, 1-20.
    Samriddhi, C., & Roshan, D. (2020). Wearable Technology Market by Device (Fitness, Smart Watches, Smart Glasses, Smart Clothing, Others), by Product Type (Wrist Wear, Eyewear, Hearables, Neckwear, Bodywear, Others), by Application (Lifestyle, Consumer Applications, Entertainment, Healthcare, Fitness And Sports, Defense, Enterprise): Global Opportunity Analysis and Industry Forecast, 2020-2031. Allied Market Research, Resource: https://www.alliedmarketresearch.com/wearable-technology-market.
    Sanchez, A., Millan-Calenti, J. C., & Lorenzo-Lopez, L. (2013). Multisensory Stimulation for People with Dementia: A Review of the Literature. American Journal of Alzheimer’s Disease & Other Dementias, 28(1):7-14. doi: 10.1177/1533317512466693.
    Saragih, I. D., Everard, G., & Lee, B. O. (2022). A Systematic Review and Meta-Analysis of Randomized Controlled Trials on the Effect of Serious Games on People with Dementia. Ageing Research Reviews, 82:101740. doi: 10.1016/j.arr.2022.
    Schofield, J. S., Evans, K. R., Hebert, J. S., Marasco, P. D., & Carey, J. P. (2016). The Effect of Biomechanical Variables on Force Sensitive Resistor Error: Implications for Calibration and Improved Accuracy. J Biomech, 49(5):786-792. doi: 10.1016/j.jbiomech.2016.01.022.
    Seneviratne, S., Hu, Y., Nguyem, T., Lan, G., Khalifa, S., Thilakarathna, K., Hassan, M., & Seneviratne, A. (2017). A Survey of Wearable Devices and Challenges. IEEE Communications Surveys & Tutorials, 19(4), 2573-2620.
    Seo, M., Won, C. W., Kim, S., Yoo, J. H., Kim, Y. H., & Kim, B. S. (2020). The Association of Gait Speed and Frontal Lobe among Various Cognitive Domains: The Korean Frailty and Aging Cohort Study (KFACS). The Journal of Nutrition, Health & Aging, 24(1):91-97. doi: 10.1007/s12603-019-1276-9.
    Shaughnessy, K. A., Hackney, K. J., Clark, B. C., Kraemer, W. J., Terbizan, D. J., Bailey, R. R., & McGrath, R. (2020). A Narrative Review of Handgrip Strength and Cognitive Functioning: Bringing a New Characteristic to Muscle Memory. Journal of Alzheimer’s Disease , 73(4):1265-1278. doi: 10.3233/JAD-190856.
    Shin, J. H. (2022). Dementia Epidemiology Fast Sheet. Annals of Rehabilitation Medicine, 46(2), 53-59.
    Shneiderman, B., Plaisant, C., Cohen, M., & Jacobs, S. (2010). Designing the User Interface: Strategies for Effective Human-Computer Interaction, 5th Edition. Designing the User Interface: Strategies for Effective Human-Computer Interaction.
    Simsek, H., Meseri, R., Sahin, S., Kilavuz, A., Bicakli, D. H., Uyar, M., Savas, S., Sarac, F. & Akcicek, F. (2019). Prevalence of Sarcopenia and Related Factors in Community-Dwelling Elderly Individuals. Saudi Medical Journal, 40(6):568-574. doi: 10.15537/smj.2019.6.23917.
    Smith, B. C., & D’Amico M. (2019). Sensory-Based Interventions for Adults with Dementia and Alzheimer’s Disease: A Scoping Review. Occupational Therapy In Health Care , 34(3):171-201. doi: 10.1080/07380577.2019.
    Smith, M. & Jeffery, R. C. H. (2020). Addressing the Challenges of Artificial Intelligence in Medicine. Internal Medicine Journal, 50(10):1278-1281. doi: 10.1111/imj.15017.
    Sposito, G., Barbosa, A., Figueiredo, D., Yassuda, M. S., & Marques, A. (2017). Effects of Multisensory and Motor Stimulation on the Behavior of People with Dementia. Dementia, 16(3):344-359. doi: 10.1177/1471301215592080.
    Stavropoulos, T. G., Papastergiou, A., Mpaltadoros, L., Nikolopoulos, S., & Kompatsiaris, I. (2020). IoT Wearable Sensors and Devices in Elderly Care: A Literature Review. Sensors, 20(10):2826. doi: 10.3390/s20102826.
    Sui, S. X., Williams, L. J., Holloway-Kew, K. L., Hyde, N. K. & Pasco, J. A. (2020). Skeletal Muscle Health and Cognitive Function: A Narrative Review. International Journal of Molecular Sciences. 22(1):255. doi: 10.3390/ijms22010255.
    Swinnen, N., Vandenbulcke, M., de Bruin, E. D., Akkerman, R., Stubbs, Brendon, & Vancampfort, D. (2020). Exergaming for People with Major Neurocognitive Disorder: a Qualitative Study. Disability and Rehabilitation, 44(10):2044-2052. doi: 10.1080/09638288.2020.1822934.
    Talukder, M. S., Laato, S., Najmul Islam, A. K. M., & Bao, Y. (2021). Continued Use Intention of Wearable Health Technologies Among the Elderly: an Enablers and Inhibitors Perspective. Internet Research, 31(5).
    Tam, W., Poon, S. N., Mahendran, R., Kua, E. H., & Wu, X. V. (2021). The Effectiveness of Reminiscence-Based Intervention on Improving Psychological Well-Being in Cognitively Intact Older Adults: a Systematic Review and Meta-Analysis. International Journal of Nursing Studies, 114:103847. doi: 10.1016/j.ijnurstu.2020.103847.
    Tari, A. R., Norevik, C. S., Scrimgeour, N. R., Kobro-Flatmoen, A. J., Storm-Mathisen, L., Bergersen, H., Wrann, C. D., Selbaek, G., Kivipelto, M., Moreire, J. B. N., & Wisloff, U. (2019). Are the Neuroprotective Effects of Exercise Training Systemically Mediated? Progress in Cardiovascular Diseases, 62(2):94-101. doi: 10.1016/j.pcad.2019.02.003.
    Teixeira, E., Fonseca, H., Diniz-Sousa, F., Veras, L., Boppre, G., Oliveira, J., Pinto, D., Alves, A. J., Barbosa, A., Mendes, R., & Marques-Aleixo, I. (2021). Wearable Devices for Physical Activity and Healthcare Monitoring in Elderly People: A Critical Review. Geriatrics, 6(2):38. doi: 10.3390/geriatrics6020038.
    Toro, B. (2019). Memory and Standing Balance after Multisensory Stimulation in a Snoezelen Room in People with Moderate Learning Disabilities. British Journal of Learning Disabilities, 47(4), 270-278.
    Tsertsidis, A., Kolkowska, E. & Hedstrom, K. (2019). Factors Influencing Seniors' Acceptance of Technology for Ageing in Place in the Post-Implementation Stage: A Literature Review. International Journal of Medical Informatics, 129:324-333. doi: 10.1016/j.ijmedinf.2019.06.027.
    Tun, S. Y. Y., Madanian, S., & Mirza, F. (2020). Internet of Things (IoT) Applications for Elderly Care: A Reflective Review. Aging Clinical and Experimental Research, 33(4):855-867. doi: 10.1007/s40520-020-01545-9.
    Verified Market Research (2023). Global Wearable Technology Market Size By Product (Wristwear, Headwear and Eyewear, Footwear), By Application (Fitness and Wellness, Consumer Electronics), By Geographic Scope And Forecast. Resource: https://www.verifiedmarketresearch.com/product/wearable-technology-market/.
    Vieira, C., Pais-Vieira, C. F. D., Novais, J., & Perrotta, A. (2021). Serious Game Design and Clinical Improvement in Physical Rehabilitation: Systematic Review. JMIR Serious Game, 9(3): e20066. doi: 10.2196/20066.
    Vilela, V. C., Pacheco, R. L., Latorraca, C. O. C., Pachito, D. V., & Riera, R. (2017). What do Cochrane Systematic Reviews Say about Non-Pharmacological Interventions for Treating Cognitive Decline and Dementia? Sao Paulo Medical Journal, 135(3):309-320. doi: 10.1590/1516-3180.2017.0092060617.
    Wager, S., & Athey, S. (2018). Estimation and Inference of Heterogeneous Treatment Effects Using Random Forests. Journal of the American Statistical Association, 113(523),1228-1242.
    Wang, H., Tao, D., Yu, N., & Qu, X. (2020). Understanding Consumer Acceptance of Healthcare Wearable Devices: An Integrated Model of UTAUT and TTF. International Journal of Medical Informatics, 139:104156. doi: 10.1016/j.ijmedinf.2020.104156.
    Wang, L., Lou, Z., Jiang, K., & Shen, G. (2019). Bio-Multifunctional Smart Wearable Sensors for Medical Devices. Advanced Intelligent Systems, 1(5), https://doi.org/10.1002/aisy.201900040.
    Waters, B., Sousa, L., Orrell, M., & McDermott, O. (2022). Analyzing the Use of Music to Facilitate Social Interaction in Care Home Residents with Dementia: Narrative Synthesis Systematic Review. Sage Journal, 21(6):2072-2094. doi: 10.1177/14713012221100625.
    Wildenbos, G. A., Jaspers, M. W. M., Schijven, M. P., & Dusseljee-Peute, L. W. (2019). Mobile Health for Older Adult Patients: Using an Aging Barriers Framework to Classify Usability Problems. International Journal of Medical Informatics, 124:68-77. doi: 10.1016/j.ijmedinf.2019.01.006.
    Wildenbos, G. A., Peute, L., & Jaspers, M. (2018). Aging Barriers Influencing Mobile Health Usability for Older Adults: A Literature Based Framework (MOLD-US). International Journal of Medical Informatics, 114:66-75. doi: 10.1016/j.ijmedinf.2018.03.012.
    Woods, R. T., Orrel, M., Bruce, E., Edwards, R. T., Hoare, Z., Hounsome, B., Keady, J., Moniz-Cook, E. D., Orgeta, V., Rees, J., & Russell, I. (2016). REMCARE: Pragmatic Multi-Centre Randomised Trial of Reminiscence Groups for People with Dementia and their Family Carers: Effectiveness and Economic Analysis. Randomized Controlled Trial, 11(4): e0152843. doi: 10.1371/journal.pone.0152843.
    Wu, D., Chen, T., Huang, X., Chen, L., Yue, Y., Yang, H., Hu, X. & Gong, Q. (2020). The Role of Old Photos in Reminiscence Therapy in Elderly Women with Depressive Symptoms: A Functional Magnetic Resonance Imaging Study. Biological Research for Nursing, 22(2):234-246. doi: 10.1177/1099800420908002.
    Xu, W., Chen, T., Shan, Q., Hu, B., Zhao, M., Deng, X., Zuo, J., Hu, Y., & Fan, L. (2020). Sarcopenia Is Associated with Cognitive Decline and Falls but Not Hospitalization in Community-Dwelling Oldest Old in China: A Cross-Sectional Study. Medical Science Monitor, 26: e919894. doi: 10.12659/MSM.919894.
    Yang, Y., Feldman, F., Leung P. M., Scott, V., & Robinovitch, S. N. (2015). Agreement Between Video Footage and Fall Incident Reports on the Circumstances of Falls in Long-Term Care. Journal of the American Medical Directors Association, 16(5):388-94. doi: 10.1016/j.jamda.2014.12.003.
    Yu, K. H., Beam, A.L., and Kohane, I.S. (2018). Artificial Intelligence in Healthcare. Nature Biomedical Engineering, 2,719-731.
    Zarit, S. H., Chiusano, C., Harrison, A. S., Sewell, L., Krause, C. & Liu, Y. (2020). Rehabilitation of Persons with Dementia: Using Technology to Improve Participation. Aging and Mental Health, 25(3):543-550. doi: 10.1080/13607863.2020.1711864.
    Zhang, J., Johnson, T. R., Patel, V. L., Paige, D. L., & Kubose, T. (2003). Using Usability Heuristics to Evaluate Patient Safety of Medical Devices. Journal of Biomedical Informatics, 36(1-2):23-30. doi: 10.1016/s1532-0464(03)00060-1.
    Zhou, S., Ogihara, A., Nishimura, S., & Jin, Q. (2018). Analyzing the Changes of Health Condition and Social Capital of Elderly People Using Wearable Devices. Health Information Science and System, 6(1):4. doi: 10.1007/s13755-018-0044-2.

    無法下載圖示 校內:2028-12-31公開
    校外:2028-12-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE