簡易檢索 / 詳目顯示

研究生: 蔡佩汝
Tsai, Peiju
論文名稱: C 型肝炎病毒從急性至慢性感染造成宿主生物恆定的變化之研究
Study on the alterations of host homeostasis induced by hepatitis C virus from acute to chronic infections
指導教授: 楊孔嘉
Young, Kung-Chia
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 109
中文關鍵詞: C 型肝炎病毒慢性感染報導蛋白 SEAP比較蛋白質體質譜分析法
外文關鍵詞: Hepatitis C virus, Chronic infection, SEAP reporter system, Comparative proteomics
相關次數: 點閱:75下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • C 型肝炎病毒在臨床易造成慢性感染。然而,目前病毒如何在急性期轉慢性期間改變細胞生理仍然未知。因此假設 C 型肝炎病毒與宿主交互作用,能改變感染急性期轉慢性期間的細胞生理,導致肝細胞病變,造成脂肪肝、肝硬化至肝癌。為此首先建立細胞感染報導系統,可將細胞長期感染的特徵定義為急性期 (上升期,上升穩定期,下降期,寂靜期)與慢性期。接著探討脂肪與病毒蛋白在長期細胞感染系統與病毒核心蛋白轉殖小鼠的脂肪小滴與脂肪累積量的變化。其次,利用比較蛋白質體質譜分析法和人類蛋白質資料庫鑑定急性與慢性期共五時期之病毒感染細胞。五時期之病毒感染細胞各自具有特殊蛋白質群,進一步將這些蛋白質用蛋白質功能分選平台軟體進行蛋白質功能分選。結果顯示,大部分宿主蛋白五期之表現趨勢可歸類為上升期至上升穩定期表現下降,上升穩定期至慢性期表現上升,為第一型趨勢。此時宿主的生理特徵,如:外吐小體、鈣黏蛋白結合功能、黑素體和核糖核酸結合功能會與病毒慢性感染有關。將外吐小體相關蛋白再次功能分選,發現膜吐作用蛋白可集合成同一種表現趨勢,為第二型趨勢。此外,預測AIFM1、API5和SMC4決定了急性感染期細胞的早期細胞凋亡、細胞復活和細胞停滯。結論來說,本研究成功定義感染細胞長期感染的特徵與臨床相似。本研究能提供大量預測病毒長期感染下之生理機制,藉由改變這些細胞生理特徵會支持感染細胞長期存活於細胞中。

    Hepatitis C virus (HCV) is prone to establish chronic infection in a natural course of infection. However, the alterations of host homeostasis from HCV acute to chronic infection are not well understood. We hypothesize that HCV might interact with the host biological processes for a change of microenvironment from viral acute to chronic infections, and further develop liver diseases. In this study, we first established a platform of HCV infected reporter system to define the different stages of HCV infection as acute (exponential, plateau, declined, silencing phases) and chronic stages. Additionally, the correlations of lipids and viral proteins were examined during HCV infections by the characters of lipid droplets and the accumulated levels of lipid contents. Further, the iTRAQ labeling couple with LC-MS/MS analysis and SwissProt Protein Database were exxploited to clarify the differences of protein expressions between the HCV four acute phases and chronic stage. The identified proteins were clustered as predicted biological pathways through two major databases: GeneGo and KEGG by the ClueGO plus CluePedia software on the platform of Cytoskype. Overall host proteins in HCV-infected cells exhibited kinetic pattern 1, in which cellular expression was downregulated from the acute exponential to plateau phases, reached a nadir, and was then elevated at the chronic stage. The predicted functional pathways were the categories involving extracellular exosome, cadherin binding, melanosome, and RNA binding. The host proteins in the category of extracellular exosome could by classified into terms of endocytosis, endocytic system, ER-Golgi transport, and exocytosis, and the proteins involved in the membrane-budding pathway exhibited kinetic pattern 2, in which their expression was distinctly downregulated at the chronic stage. Moreover, AIFM1, API5, and SMC4 were differentially regulated proteins which might participate in early apoptosis, anatasis and cell cycle arrest. In conclusion, the potential biological pathways from the long-term HCV infection system might provide a new sight of HCV chornic infection for future investigation.

    I. Introduction----------- 1 1. The HCV genome and viral proteins-------- 1 2. Epidemioloy, pathology, and current therapies of HCV---- 1 3. HCV life cycle---------- 2 3-1. Viral entry----------- 2 3-2. Viral replication---------- 2 3-3. Viral assembly and release-------- 3 4. The definition of HCV acute and chronic infection----- 3 5. HCV cell-based exogenous foreign reporter systems----- 4 6. Comparative proteomics analysis-------- 5 7. HCV and intracellular transport-------- 5 8. Apoptosis and cell cycle arrest during HCV infection------ 6 8-1. The definition of early and late apoptosis------- 6 8-2 Reversible apoptosis (anatasis) ------- 6 II. Rationale of this study--------- 8 III. Specific aims---------- 9 IV. Materials and methods-------- 10 1. Cells and antibodies---------- 10 2. HCVcc preparation and viral titer determination----- 10 3. Secreted alkaline phosphatase assay------- 10 4. Trypan Blue exclusion test of cell viability------ 10 5. Extracellular viral infectivity determination------ 11 6. HCV RNA quantification-------- 11 7. Immunoblot assay---------- 11 8. Immunofluorescence stain-------- 12 9 Triglyceride and cholesterol quantification assay----- 12 10. iTRAQ protein sample preparation------- 12 11. iTRAQ labeling, basic reversed-phase chromatography and LC-MS/MS analysis- 12 12. Protein identification and quantitation------ 13 13. The software of functional pathways prediction----- 13 14. Apoptosis analysis---------- 14 15. Cell cycle analysis---------- 14 16. Statistical analysis---------- 14 V. Results----------- 15 1. Establishment of HCV chronic infection reporter system----- 15 1-1. HCV infection time was divided into acute and chronic stages--- 15 1-1-1. HCV activity could be long-term monitored though reporter system in vitro. 1-1-2. The dynamic activities of parameters during HCV infection were similar to the extracellular SEAP reporter curve. 1-2. The HCV induced hepatocyte steatosis pathology could be monitored in reporter cells and in HCV transgenic mice------ 16 1-2-1. Lipid droplets changed in HCV chronic infected cells 1-2-2. The levels of intracellular lipids changed in HCV chronic infected cells 1-2-3. The weights of HCV core transgenic and wild type mice 1-2-4. Lipid profiles changed in mice serum and liver during aging 1-3. Cell growth was changed before viral activity became silencing --- 18 1-4. HCV primary infection inhibit viral superinfection---- 18 1-4-1. HCV inhibit the viral secondary infection 1-4-2. HCV chronic infection attenuated the receptor expression 2. Biological processes of HCV acute to chronic infection were predicted by proteomics------------- 20 2-1. iTRAQ coupling with LC-MS/MS analysis, protein clustering, and ClueGo- CluePedia prediction--------- 20 2-2. HCV controlled the intracellular trafficking----- 21 2-2-1. Endocytosis 2-2-2. Endocytic system 2-2-2-1. From plasma membrane to MVB 2-2-2-2. From MVB to plasma membrane 2-2-2-3. Endosomal recycle 2-2-3. Secretory system 2-2-3-1. Classical secretory pathway 2-2-3-2. Unconventional pathway 2-2-3-3. Extracellular space 3. The candidate pathways and their proteins associated with the HCV infection-- 32 3-1. Apoptosis was reversed at HCV actue stage----- 32 3-1-1. HCV infection induced early apoptosis in HCV acute stage 3-1-2. The early apoptosis rate of infected cells could correlate with apoptosis signal which was predicted in HCV acute stage. 3-1-3. API5 supported HCV infected cells turned to survive by after enhancing apoptosis signal pathway 3-1-4. AIFM1 was the apoptotic factor which induced early apoptosis 3-2. HCV induced cell cycle arrest-------- 34 3-2-1. HCV altered cell cycle in HCV acute stage. 3-2-2. SMC4 controlled the HCV infected cells arrested in G2/M phase at acute stage. 3-2-3. HCV controlled the subunits of proteasome during HCV chronic infection. VI. Discussion---------- 36 1. The switching of secretion process determined HCV infected cells entered to the silencing phase and chronic stage.---------- 36 2. HCV genotypes determined the size of lipid droplets. ----- 37 3. Cholesterol level determined the HCV activity. ------- 38 4. Cholesterol might flux to lysosome during HCV declined phase. ---- 38 5. Profiling of the differential hepatic protein kinetics yielded the association of intracellular transport function with long-term cultured HCV-infected hepatocytes. --- 39 6. HCV controlled the COPII vesicle which correlated with the secretion road of ALB.-- 41 7. Endosomal system was essential for HCV secretion. ----- 42 8. HCV infection induced the phophatidleserine exposure on the outer plasma membrane-43 9. HCV infection controlled the cell survive. ------- 44 VII. Conclusion---------- 46 VIII. References----------- 48 IX. Tables----------- 60 Table 1. The samples of indicated time points in compared groups label with four iTRAQ tags and the number of total gained protein in each compared groups--- 60 Table 2. The total protein numbers of upregulated, downregulated, no changed and opposite expression in five days/stages. ----- 61 Table 3. The predicted biological pathways were regulated during whole HCV chronic infection period. --------- 62 Table 4. The proteins in membrane budding and melanosome were associated with HCV infection----------- 64 Table 5. The apoptosis pathway was predicted from the upregulated or downregulated proteins of five stages. -------- 65 Table 6. The cell cycle process was predicted from the upregulated or downregulated proteins of five stages. -------- 66 X. Figures----------- 67 Figure 1. The curve of extracellular SEAP activity of acute to chronic infected cells. - 67 Figure 2. The change of extracellular viral infectivity of acute to chronic infected cells. -- 68 Figure 3. The alteration of viral RNA levels of acute to chornic infected cells. --- 69 Figure 4. The alteration of viral proteins of acute to chornic infected cells. --- 70 Figure 5. The alteration of lipid droplets of mock and of acute to chornic infected cells. -- 71 Figure 6. The intracellular lipids of mock and of HCV acute to chornic infected cells. -- 73 Figure 7. Mice body weights of wild type and HCV coreTg mice----- 74 Figure 8. The lipid profiles of 7 to 12-week old male mice ---- 75 Figure 9. The cell number of mock and infected cells. ------ 76 Figure 10. HCV infection inhibited the same virus secondary infection. --- 77 Figure 11. CD81 expression changed during HCV chronic infection. ---- 78 Figure 12. The viral protein expressions and extracellular viral infectivity of five stages. - 79 Figure 13. The expression trend of prediction pathway networks in the five stages. - 80 Figure 14. 227 intracellular transport proteins in category of “extracellular exosome”. -- 81 Figure 15. The 77 trafficking proteins those involved in vesicle transport. -- 82 Figure 16. The 36 proteins expressing pattern 1 involved in vesicle transport. -- 84 Figure 17. The 41 proteins expressing non-pattern 1 involved in vesicle transport. -- 86 Figure 18. The 15 proteins expressing pattern 2 involved in vesicle transport. -- 88 Figure 19. The 26 proteins expressing with non-pattern 1/2 involved in vesicle transport.- 89 Figure 20. The proteins in term of endocytosis. ------ 90 Figure 21. The proteins in term of endosome to MVB. ----- 91 Figure 22. The proteins in term of MVB to plasma membrane. ----- 92 Figure 23. Confirm the expression of apolipoprotein E. ------ 93 Figure 24. The proteins in term of endosomal recycle system. ---- 94 Figure 25. The proteins in term of intracellular transport from ER to trans-Golgi. - 95 Figure 26. The secretory proteins in cells during HCV chronic infection. --- 97 Figure 27. The apoptosis assay of HCV acute infected stage. ---- 98 Figure 28. The iTRAQ ratios of apoptotic proteins during HCV chronic infection. -- 99 Figure 29. The cell cycle assay of HCV acute infected stage. ---- 100 Figure 30. The iTRAQ ratios of cell cycle proteins during HCV chronic infection. - 102 Figure 31. proteasomal proteins of cell cycle process. ------ 103 XI. Appendix----------- 104 1. The flowchart of proteomics analysis------- 104 2. The genes and their names of proteins------- 106 XII. Author----------- 109

    1. WHO. Global hepatitis report, 2017. 2017:83.
    2. Corless L, Crump CM, Griffin SDC, Harris M. Vps4 and the ESCRT-III complex are required for the release of infectious hepatitis C virus particles. J Gen Virol 2010;91:362-372.
    3. Tiwari S, Siddiqi SA. Intracellular Trafficking and Secretion of VLDL. Atertio Thromb Vasc Biol 2012;32:1079-1086.
    4. Lin CC, Tsai P, Sun HY, Hsu MC, Lee JC, Wu IC, et al. Apolipoprotein J, a glucose-upregulated molecular chaperone, stabilizes core and NS5A to promote infectious hepatitis C virus virion production. J Hepatol 2014;61:984-993.
    5. Levy PL, Duponchel S, Eischeid H, Molle J, Michelet M, Diserens G, et al. Hepatitis C virus infection triggers a tumor-like glutamine metabolism. Hepatology 2017;65:789-803.
    6. Barth H, Schafer C, Adah MI, Zhang FM, Linhardt RJ, Toyoda H, et al. Cellular binding of hepatitis C virus envelope glycoprotein E2 requires cell surface heparan sulfate. Journal of Biological Chemistry 2003;278:41003-41012.
    7. Agnello V, Abel G, Elfahal M, Knight GB, Zhang QX. Hepatitis C virus and other Flaviviridae viruses enter cells via low density lipoprotein receptor. Proc Natl Acad Sci U S A 1999;96:12766-12771.
    8. Scarselli E, Ansuini H, Cerino R, Roccasecca RM, Acali S, Filocamo G, et al. The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. EMBO J 2002;21:5017-5025.
    9. Pileri P, Uematsu Y, Campagnoli S, Galli G, Falugi F, Petracca R, et al. Binding of hepatitis C virus to CD81. Science 1998;282:938-941.
    10. Evans MJ, von Hahn T, Tscherne DM, Syder AJ, Panis M, Wolk B, et al. Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 2007;446:801-805.
    11. Ploss A, Evans MJ, Gaysinskaya VA, Panis M, You HN, de Jong YP, et al. Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature 2009;457:882-886.
    12. Sainz B, Barretto N, Martin DN, Hiraga N, Imamura M, Hussain S, et al. Identification of the Niemann-Pick C1-like 1 cholesterol absorption receptor as a new hepatitis C virus entry factor. Nat Med 2012;18:281-285.
    13. Tscherne DM, Jones CT, Evans MJ, Lindenbach BD, McKeating JA, Rice CM. Time- and temperature-dependent activation of hepatitis C virus for low-pH-triggered entry. J Virol 2006;80:1734-1741.
    14. Johnson DC, Huber MT. Directed egress of animal viruses promotes cell-to-cell spread. J Virol 2002;76:1-8.
    15. Timpe JM, Stamataki Z, Jennings A, Hu K, Farquhar MJ, Harris HJ, et al. Hepatitis C virus cell-cell transmission in hepatoma cells in the presence of neutralizing antibodies. Hepatology 2008;47:17-24.
    16. Liang YQ, Shilagard T, Xiao SY, Snyder N, Lau D, Cicalese L, et al. Visualizing Hepatitis C Virus Infections in Human Liver by Two-Photon Microscopy. Gastroenterology 2009;137:1448-1458.
    17. Brimacombe CL, Grove J, Meredith LW, Hu K, Syder AJ, Flores MV, et al. Neutralizing Antibody-Resistant Hepatitis C Virus Cell-to-Cell Transmission. J Virol 2011;85:596-605.
    18. Egger D, Wolk B, Gosert R, Bianchi L, Blum HE, Moradpour D, et al. Expression of hepatitis C virus proteins induces distinct membrane alterations including a candidate viral replication complex. J Virol 2002;76:5974-5984.
    19. Poenisch M, Bartenschlager R. New Insights into Structure and Replication of the Hepatitis C Virus and Clinical Implications. Semin Liver Dis 2010;30:333-347.
    20. Tellinghuisen TL, Foss KL, Treadaway JC, Rice CM. Identification of residues required for RNA replication in domains II and III of the hepatitis C virus NS5A protein. J Virol 2008;82:1073-1083.
    21. Schwer B, Ren ST, Pietschmann T, Kartenbeck J, Kaehlcke K, Bartenschlager R, et al. Targeting of hepatitis C virus core protein to mitochondria through a novel C-terminal localization motif. J Virol 2004;78:7958-7968.
    22. Miyanari Y, Atsuzawa K, Usuda N, Watashi K, Hishiki T, Zayas M, et al. The lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol 2007;9:1089-97.
    23. Bartenschlager R, Cosset FL, Lohmann V. Hepatitis C virus replication cycle. J Hepatol 2010;53:583-585.
    24. Popescu CI, Callens N, Trinel D, Roingeard P, Moradpour D, Descamps V, et al. NS2 Protein of Hepatitis C Virus Interacts with Structural and Non-Structural Proteins towards Virus Assembly. PLoS Path 2011;7.
    25. Appel N, Zayas M, Miller S, Krijnse-Locker J, Schaller T, Friebe P, et al. Essential role of domain III of nonstructural protein 5A for hepatitis C virus infectious particle assembly. PLoS Path 2008;4.
    26. Ogawa K, Hishiki T, Shimizu Y, Funami K, Sugiyama K, Miyanari Y, et al. Hepatitis C virus utilizes lipid droplet for production of infectious virus. Proceedings of the Japan Academy Series B-Physical and Biological Sciences 2009;85:217-228.
    27. Herker E, Harris C, Hernandez C, Carpentier A, Kaehlcke K, Rosenberg AR, et al. Efficient Hepatitis C Virus Particle Formation Requires Diacylglycerol Acyltransferase 1 (DGAT1). Nat Med 2010;16:1295-1298.
    28. Syed GH, Khan M, Yang S, Siddiqui A. Hepatitis C Virus Lipoviroparticles Assemble in the Endoplasmic Reticulum (ER) and Bud off from the ER to the Golgi Compartment in COPII Vesicles. J Virol 2017;91.
    29. Takacs CN, Andreo U, Thi VLD, Wu X, Gleason CE, Itano MS, et al. Differential regulation of lipoprotein and hepatitis C virus secretion by Rab1b. Cell reports 2017;21:431-441.
    30. Mankouri J, Walter C, Stewart H, Bentham M, Park WS, Heo WD, et al. Release of Infectious Hepatitis C Virus from Huh7 Cells Occurs via a trans-Golgi Network-to-Endosome Pathway Independent of Very-Low-Density Lipoprotein Secretion. J Virol 2016;90:7159-70.
    31. Bukong TN, Momen-Heravi F, Kodys K, Bala S, Szabo G. Exosomes from Hepatitis C Infected Patients Transmit HCV Infection and Contain Replication Competent Viral RNA in Complex with Ago2-miR122-HSP90. PLoS Path 2014;10:e1004424.
    32. Syed GH, Khan M, Yang S, Siddiqui A. Hepatitis C Virus Lipoviroparticles Assemble in the Endoplasmic Reticulum (ER) and Bud off from the ER to the Golgi Compartment in COPII Vesicles. J Virol 2017;91.
    33. Blackard JT, Shata MT, Shire NJ, Sherman KE. Acute hepatitis C virus infection: a chronic problem. Hepatology 2008;47:321-31.
    34. Murray EM, Grobler JA, Markel EJ, Pagnoni MF, Paonessa G, Simon AJ, et al. Persistent replication of hepatitis C virus replicons expressing the beta-lactamase reporter in subpopulations of highly permissive Huh7 cells. J Virol 2003;77:2928-35.
    35. Yi M, Bodola F, Lemon SM. Subgenomic hepatitis C virus replicons inducing expression of a secreted enzymatic reporter protein. Virology 2002;304:197-210.
    36. Tai AW, Benita Y, Peng LF, Kim S-S, Sakamoto N, Xavier RJ, et al. A Functional Genomic Screen Identifies Cellular Cofactors of Hepatitis C Virus Replication. Cell host & microbe 2009;5:298-307.
    37. Roe B, Kensicki E, Mohney R, Hall WW. Metabolomic Profile of Hepatitis C Virus-Infected Hepatocytes. PLoS ONE 2011;6:e23641.
    38. MacPherson JI SB, Wieland S, Zhong J, Targett-Adams P. An Integrated Transcriptomic and Meta-Analysis of Hepatoma Cells Reveals Factors That Influence Susceptibility to HCV Infection. PLoS ONE 2011;6:e25584.
    39. Diamond DL, Syder AJ, Jacobs JM, Sorensen CM, Walters KA, Proll SC, et al. Temporal proteome and lipidome profiles reveal hepatitis C virus-associated reprogramming of hepatocellular metabolism and bioenergetics. PLoS Pathog 2010;6:e1000719.
    40. Yang L, Rudser KD, Higgins L, Rosen HR, Zaman A, Corless CL, et al. Novel biomarker candidates to predict hepatic fibrosis in hepatitis C identified by serum proteomics. Dig Dis Sci 2011;56:3305-15.
    41. Shetty V, Jain P, Nickens Z, Sinnathamby G, Mehta A, Philip R. Investigation of plasma biomarkers in HIV-1/HCV mono- and coinfected individuals by multiplex iTRAQ quantitative proteomics. OMICS 2011;15:705-17.
    42. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 2004;3:1154-69.
    43. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 2009;25:1091-3.
    44. Bindea G, Galon J, Mlecnik B. CluePedia Cytoscape plugin: pathway insights using integrated experimental and in silico data. Bioinformatics 2013;29:661-3.
    45. Meertens L, Bertaux C, Dragic T. Hepatitis C virus entry requires a critical postinternalization step and delivery to early endosomes via clathrin-coated vesicles. J Virol 2006;80:11571-8.
    46. Nielsen SU, Bassendine MF, Burt AD, Martin C, Pumeechockchai W, Toms GL. Association between Hepatitis C Virus and Very-Low-Density Lipoprotein (VLDL)/LDL Analyzed in Iodixanol Density Gradients. J Virol 2006;80:2418-2428.
    47. Bayer K, Banning C, Bruss V, Wiltzer-Bach L, Schindler M. Hepatitis C Virus Is Released via a Noncanonical Secretory Route. J Virol 2016;90:10558-10573.
    48. Wang L, Kim JY, Liu HM, Lai MMC, Ou J-hJ. HCV-induced autophagosomes are generated via homotypic fusion of phagophores that mediate HCV RNA replication. PLoS Path 2017;13:e1006609.
    49. Shrivastava S, Devhare P, Sujijantarat N, Steele R, Kwon YC, Ray R, et al. Knockdown of Autophagy Inhibits Infectious Hepatitis C Virus Release by the Exosomal Pathway. J Virol 2016;90:1387-96.
    50. Fischer R, Baumert T, Blum H. Hepatitis C virus infection and apoptosis. World J Gastroenterol 2007;13:4865-4872.
    51. Silberstein E, Ulitzky L, Lima LA, Cehan N, Teixeira-Carvalho A, Roingeard P, et al. HCV-Mediated Apoptosis of Hepatocytes in Culture and Viral Pathogenesis. PLOS ONE 2016;11:e0155708.
    52. Kim S-J, Syed GH, Khan M, Chiu W-W, Sohail MA, Gish RG, et al. Hepatitis C virus triggers mitochondrial fission and attenuates apoptosis to promote viral persistence. Proceedings of the National Academy of Sciences 2014;111:6413.
    53. Lee SH, Kim YK, Kim CS, Seol SK, Kim J, Cho S, et al. E2 of Hepatitis C Virus Inhibits Apoptosis. The Journal of Immunology 2005;175:8226.
    54. Lan K-H, Sheu M, Hwang s-j, Yen S-H, Chen S-Y, Wu J-C, et al., HCV NS5A interacts with p53 and inhibits p53-mediated Apoptosis. 2002; Vol. 21, p 4801-11.
    55. Nguyen H, Sankaran S, Dandekar S. Hepatitis C virus core protein induces expression of genes regulating immune evasion and anti-apoptosis in hepatocytes. Virology 2006;354:58-68.
    56. Masao H, Shuichi K, Takeo S, Eiki M, Kenichi K, Li‐hua P, et al. Hepatitis C virus core protein induces apoptosis and impairs cell‐cycle regulation in stably transformed chinese hamster ovary cells. Hepatology 2000;31:1351-1359.
    57. Wang Q, Chen J, Wang Y, Han X, Chen X. Hepatitis C virus induced a novel apoptosis-like death of pancreatic beta cells through a caspase 3-dependent pathway. PLoS One 2012;7:e38522.
    58. Lim EJ, El Khobar K, Chin R, Earnest-Silveira L, Angus PW, Bock CT, et al. Hepatitis C virus-induced hepatocyte cell death and protection by inhibition of apoptosis. J Gen Virol 2014;95:2204-15.
    59. Deng L, Adachi T, Kitayama K, Bungyoku Y, Kitazawa S, Ishido S, et al. Hepatitis C Virus Infection Induces Apoptosis through a Bax-Triggered, Mitochondrion-Mediated, Caspase 3-Dependent Pathway. J Virol 2008;82:10375-10385.
    60. Kannan RP, Hensley LL, Evers LE, Lemon SM, McGivern DR. Hepatitis C virus infection causes cell cycle arrest at the level of initiation of mitosis. J Virol 2011;85:7989-8001.
    61. Geske FJ, Lieberman R, Strange R, Gerschenson LE. Early stages of p53-induced apoptosis are reversible. Cell Death And Differentiation 2001;8:182.
    62. Tang HL, Yuen KL, Tang HM, Fung MC. Reversibility of apoptosis in cancer cells. Br J Cancer 2009;100:118-122.
    63. Tang HL, Tang HM, Mak KH, Hu S, Wang SS, Wong KM, et al. Cell survival, DNA damage, and oncogenic transformation after a transient and reversible apoptotic response. Mol Biol Cell 2012;23:2240-2252.
    64. Sun G, Guzman E, Balasanyan V, Conner CM, Wong K, Zhou HR, et al. A molecular signature for anastasis, recovery from the brink of apoptotic cell death. The Journal of Cell Biology 2017.
    65. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res 2003;13:2498-2504.
    66. Liu S, Yang W, Shen L, Turner JR, Coyne CB, Wang T. Tight Junction Proteins Claudin-1 and Occludin Control Hepatitis C Virus Entry and Are Downregulated during Infection To Prevent Superinfection. J Virol 2009;83:2011-2014.
    67. Ke PY, Chen. SL. Active RNA replication of hepatitis C virus downregulates CD81 expression. PLoS One 2013;8:e54866.
    68. Benga WJA, Krieger SE, Dimitrova M, Zeisel MB, Parnot M, Lupberger J, et al. Apolipoprotein E Interacts with Hepatitis C Virus Nonstructural Protein 5A and Determines Assembly of Infectious Particles. Hepatology 2010;51:43-53.
    69. Yin P, Hong Z, Yang X, Chung RT, Zhang L. A role for retromer in hepatitis C virus replication. Cell Mol Life Sci 2016;73:869-881.
    70. Panigrahi R, Chandra PK, Ferraris P, Kurt R, Song K, Garry RF, et al. Persistent hepatitis C virus infection impairs ribavirin antiviral activity through clathrin-mediated trafficking of equilibrative nucleoside transporter 1. J Virol 2015;89:626-42.
    71. Kim JY, Wang L, Lee J, Ou J-hJ. Hepatitis C Virus Induces the Localization of Lipid Rafts to Autophagosomes for Its RNA Replication. J Virol 2017;91:e00541-17.
    72. Dubuisson J, Rice CM. Hepatitis C virus glycoprotein folding: disulfide bond formation and association with calnexin. J Virol 1996;70:778-786.
    73. Li H-D, Liu W-X, Michalak M. Enhanced Clathrin-Dependent Endocytosis in the Absence of Calnexin. PLOS ONE 2011;6:e21678.
    74. Enrich C, Rentero C, de Muga SV, Reverter M, Mulay V, Wood P, et al. Annexin A6—Linking Ca2+ signaling with cholesterol transport. Biochim Biophys Acta 2011;1813:935-947.
    75. Pham X, Song G, Lao S, Goff L, Zhu H, Valle D, et al. The DPYSL2 gene connects mTOR and schizophrenia. Translational Psychiatry 2016;6:e933.
    76. Zobiack N, Rescher U, Ludwig C, Zeuschner D, Gerke V. The Annexin 2/S100A10 Complex Controls the Distribution of Transferrin Receptor-containing Recycling Endosomes. Mol Biol Cell 2003;14:4896-4908.
    77. Rezvanpour A, Santamaria-Kisiel L, Shaw GS. The S100A10-Annexin A2 Complex Provides a Novel Asymmetric Platform for Membrane Repair. The Journal of Biological Chemistry 2011;286:40174-40183.
    78. Ding Y, Wang J, Wang J, Stierhof Y-D, Robinson DG, Jiang L. Unconventional protein secretion. Trends Plant Sci 2012;17:606-615.
    79. Rabouille C. Pathways of Unconventional Protein Secretion. Trends Cell Biol 2017;27:230-240.
    80. Fabrice Bovia, Nazarena Bui, Strub K. the heterodimeric subunit srp9/14 of the signal recognition particle functions as permuted single polypeptide chain. Nucleic Acid Research 1994:228-2035.
    81. Beck KA, Nelson WJ. A spectrin membrane skeleton of the Golgi complex. Biochim Biophys Acta 1998;1404:153-160.
    82. De Matteis MA, Morrow JS. Spectrin tethers and mesh in the biosynthetic pathway. J Cell Sci 2000;113:2331.
    83. Reiling JH, Olive AJ, Sanyal S, Carette JE, Brummelkamp TR, Ploegh HL, et al. A Luman/CREB3–ADP-ribosylation factor 4 (ARF4) signaling pathway mediates the response to Golgi stress and susceptibility to pathogens. Nat Cell Biol 2013;15:1473-1485.
    84. Nakai W, Kondo Y, Saitoh A, Naito T, Nakayama K, Shin H-W. ARF1 and ARF4 regulate recycling endosomal morphology and retrograde transport from endosomes to the Golgi apparatus. Mol Biol Cell 2013;24:2570-2581.
    85. Senju Y, Itoh Y, Takano K, Hamada S, Suetsugu S. Essential role of PACSIN2/syndapin-II in caveolae membrane sculpting. J Cell Sci 2011;124:2032.
    86. Laufman O, Kedan A, Hong W, Lev S. Direct interaction between the COG complex and the SM protein, Sly1, is required for Golgi SNARE pairing. The EMBO Journal 2009;28:2006-2017.
    87. Wei Y, Wang D, Jin F, Bian Z, Li L, Liang H, et al. Pyruvate kinase type M2 promotes tumour cell exosome release via phosphorylating synaptosome-associated protein 23. Nat Commun 2017;8:14041.
    88. Emanuele C, Gabriella R, Paola P, Jacopo M. Enlargeosome Traffic: Exocytosis Triggered by Various Signals Is Followed by Endocytosis, Membrane Shedding or Both. Traffic 2007;8:742-757.
    89. Linial M, Miller K, Scheller RH. VAT 1: An abundant membrane protein from torpedo cholinergic synaptic vesicles. Neuron 1989;2:1265-1273.
    90. Faugaret D, Chouinard FC, Harbour D, El azreq M-A, Bourgoin SG. An essential role for phospholipase D in the recruitment of vesicle amine transport protein-1 to membranes in human neutrophils. Biochem Pharmacol 2011;81:144-156.
    91. Gerelsaikhan T, Vasa PK, Chander A. Annexin A7 and SNAP23 interactions in alveolar type II cells and in vitro: A role for Ca2+ and PKC. Biochim Biophys Acta 2012;1823:1796-1806.
    92. Araujo TLS, Zeidler JD, Oliveira PVS, Dias MH, Armelin HA, Laurindo FRM. Protein disulfide isomerase externalization in endothelial cells follows classical and unconventional routes. Free Radical Biol Med 2017;103:199-208.
    93. Daste F, Galli T, Tareste D. Structure and function of longin SNAREs. J Cell Sci 2015;128:4263.
    94. Vij N. AAA ATPase p97/VCP: cellular functions, disease and therapeutic potential. J Cell Mol Med 2008;12:2511-2518.
    95. Arita M, Wakita T, Shimizu H. Valosin-Containing Protein (VCP/p97) Is Required for Poliovirus Replication and Is Involved in Cellular Protein Secretion Pathway in Poliovirus Infection. J Virol 2012;86:5541-5553.
    96. Peattie DA, Harding MW, Fleming MA, DeCenzo MT, Lippke JA, Livingston DJ, et al. Expression and characterization of human FKBP52, an immunophilin that associates with the 90-kDa heat shock protein and is a component of steroid receptor complexes. Proc Natl Acad Sci U S A 1992;89:10974-10978.
    97. Eden Emily R, Sanchez-Heras E, Tsapara A, Sobota A, Levine Tim P, Futter Clare E. Annexin A1 Tethers Membrane Contact Sites that Mediate ER to Endosome Cholesterol Transport. Dev Cell 2016;37:473-483.
    98. Morris EJ, Michaud WA, Ji JY, Moon NS, Rocco JW, Dyson NJ. Functional identification of Api5 as a suppressor of E2F-dependent apoptosis in vivo. PLoS Genet 2006;2:1834-1848.
    99. Rigou P, Piddubnyak V, Faye A, Rain JC, Michel L, Calvo F, et al. The antiapoptotic protein AAC-11 interacts with and regulates Acinus-mediated DNA fragmentation. EMBO J 2009;28:1576-1588.
    100. Tatsukawa H, Furutani Y, Hitomi K, Kojima S. Transglutaminase 2 has opposing roles in the regulation of cellular functions as well as cell growth and death. Cell Death &Amp; Disease 2016;7:e2244.
    101. Sevrioukova IF. Apoptosis-Inducing Factor: Structure, Function, and Redox Regulation. Antioxidants & Redox Signaling 2011;14:2545-2579.
    102. Shoji I. Roles of the two distinct proteasome pathways in hepatitis C virus infection. World Journal of Virology 2012;1:44-50.
    103. Bassermann F, Eichner R, Pagano M. The ubiquitin proteasome system – Implications for cell cycle control and the targeted treatment of cancer. Biochim Biophys Acta 2014;1843:10.1016/j.bbamcr.2013.02.028.
    104. Kanwal F, Kramer J, Asch SM, Chayanupatkul M, Cao Y, El-Serag HB. Risk of Hepatocellular Cancer in HCV Patients Treated With Direct-Acting Antiviral Agents. Gastroenterology 2017;153:996-1005.e1.
    105. Piodi A, Chouteau P, Lerat H, Hézode C, Pawlotsky J-M. Morphological changes in intracellular lipid droplets induced by different hepatitis C virus genotype core sequences and relationship with steatosis. Hepatology 2008;48:16-27.
    106. Asselah T, Rubbia‐Brandt L, Marcellin P, Negro F. Steatosis in chronic hepatitis C: why does it really matter? Gut 2006;55:123-130.
    107. Aizaki H, Morikawa K, Fukasawa M, Hara H, Inoue Y, Tani H, et al. Critical role of virion-associated cholesterol and sphingolipid in hepatitis C virus infection. J Virol 2008;82:5715-5724.
    108. Wüstner D, Solanko K. How cholesterol interacts with proteins and lipids during its intracellular transport. Biochim Biophys Acta 2015;1848:1908-1926.
    109. Musiol A, Gran S, Ehrhardt C, Ludwig S, Grewal T, Gerke V, et al. Annexin A6-balanced late endosomal cholesterol controls influenza A replication and propagation. MBio 2013;4:e00608-13.
    110. Eid W, Dauner K, Courtney KC, Gagnon A, Parks RJ, Sorisky A, et al. mTORC1 activates SREBP-2 by suppressing cholesterol trafficking to lysosomes in mammalian cells. Proc Natl Acad Sci U S A 2017;114:7999-8004.
    111. Rivas HG, Schmaling SK, Gaglia MM. Shutoff of Host Gene Expression in Influenza A Virus and Herpesviruses: Similar Mechanisms and Common Themes. Viruses 2016;8:102.
    112. Brazzoli M, Helenius A, Foung SKH, Houghton M, Abrignani S, Merola M. Folding and dimerization of hepatitis C virus E1 and E2 glycoproteins in stably transfected CHO cells. Virology 2005;332:438-453.
    113. Triyatni M, Berger EA, Saunier B. Assembly and release of infectious hepatitis C virus involving unusual organization of the secretory pathway. World J Hepatol. 2016;8:796-814.
    114. Manna D, Aligo J, Xu C, Park WS, Koc H, Do Heo W, et al. Endocytic Rab proteins are required for hepatitis C virus replication complex formation. Virology 2010;398:21-37.
    115. Su WC, Chao TC, Huang YL, Weng SC, Jeng KS, Lai MMC. Rab5 and Class III Phosphoinositide 3-Kinase Vps34 Are Involved in Hepatitis C Virus NS4B-Induced Autophagy. J Virol 2011;85:10561-10571.
    116. Wozniak AL, Long A, Jones-Jamtgaard KN, Weinman SA. Hepatitis C virus promotes virion secretion through cleavage of the Rab7 adaptor protein RILP. Proc Natl Acad Sci U S A 2016;113:12484-12489.
    117. Gao L, Aizaki H, He J-W, Lai MMC. Interactions between Viral Nonstructural Proteins and Host Protein hVAP-33 Mediate the Formation of Hepatitis C Virus RNA Replication Complex on Lipid Raft. J Virol 2004;78:3480-3488.
    118. Ramage HR, Kumar GR, Verschueren E, Johnson JR, Von Dollen J, Johnson T, et al. A Combined Proteomics/Genomics Approach Links Hepatitis C Virus Infection with Nonsense-Mediated mRNA Decay. Mol Cell 2015;57:329-340.
    119. Erik Fries, Leif Gustafssont, Peterson PA. Four secretory proteins synthesized by hepatocytes are transported from endoplasmic reticulum to Golgi complex at different rates. The EMBO Journal 1984;3:147-152.
    120. Yeoh GCT, Wassenburg JA, Edkins E, Oliver IT. Synthesis and secretion of albumin and transferrin by foetal RAT hepatocyte cultures. Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis 1979;565:347-355.
    121. Corless L, Crump CM, Griffin SD, Harris M. Vps4 and the ESCRT-III complex are required for the release of infectious hepatitis C virus particles. J Gen Virol 2010;91:362-72.
    122. Deng L, Adachi T, Kitayama K, Bungyoku Y, Kitazawa S, Ishido S, et al. Hepatitis C virus infection induces apoptosis through a Bax-triggered, mitochondrion-mediated, caspase 3-dependent pathway. J Virol 2008;82:10375-85.
    123. Junseong P, Wonseok K, Seung‐Wook R, Woo‐Il K, Dong‐Yeop C, Ho LD, et al. Hepatitis C virus infection enhances TNFα‐induced cell death via suppression of NF‐κB. Hepatology 2012;56:831-840.
    124. Sacco R, Tsutsumi T, Suzuki R, Otsuka M, Aizaki H, Sakamoto S, et al. Antiapoptotic regulation by hepatitis C virus core protein through up-regulation of inhibitor of caspase-activated DNase. Virology 2003;317:24-35.
    125. Walters K-A, Syder AJ, Lederer SL, Diamond DL, Paeper B, Rice CM, et al. Genomic Analysis Reveals a Potential Role for Cell Cycle Perturbation in HCV-Mediated Apoptosis of Cultured Hepatocytes. PLoS Path 2009;5:e1000269.
    126. Tanenbaum ME, Stern-Ginossar N, Weissman JS, Vale RD. Regulation of mRNA translation during mitosis. eLife 2015;4:e07957.
    127. Thapa M, Bommakanti A, Shamsuzzaman M, Gregory B, Samsel L, Zengel JM, et al. Repressed synthesis of ribosomal proteins generates protein-specific cell cycle and morphological phenotypes. Mol Biol Cell 2013;24:3620-3633.
    128. Polymenis M, Aramayo R. Translate to divide: сontrol of the cell cycle by protein synthesis. Microbial Cell 2015;2:94-104.
    129. Sarfraz S, Hamid S, Siddiqui A, Hussain S, Pervez S, Alexander G. Altered expression of cell cycle and apoptotic proteins in chronic hepatitis C virus infection. BMC Microbiol 2008;8:133.
    130. Rivals I, Personnaz L, Taing L, Potier M-C. Enrichment or depletion of a GO category within a class of genes: which test? Bioinformatics 2007;23:401-407.

    無法下載圖示 校內:2024-01-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE