簡易檢索 / 詳目顯示

研究生: 王冠欽
Wang, Kuan-Chin
論文名稱: 三維應用晶格波茲曼法於熱交換橢圓套管之熱效率分析
Thermal efficiency analysis of double pipe heat exchanger with elliptical tube using 3D Lattice Boltzmann method
指導教授: 陳介力
Chen, Chieh-Li
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 77
中文關鍵詞: 三維晶格波茲曼法速度場橢圓扭曲套管達西摩擦因子熱對流熱交換分析
外文關鍵詞: 3D Lattice Boltzmann Flow and Temperature Field, Twisted Oval Tube, Darcy Friction Factor, Thermal Convection, Heat Exchange Analysis
相關次數: 點閱:72下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文透過三維的晶格波茲曼中的D_3 Q_15方法來模擬異形套管的流場現象與熱流混合效率問題。在固定入出口面積與雷諾數下,透過更改內橢圓管長短軸比例與節距大小討論內外管流場現象與不同節距長短討論其熱交換能力。依照不可壓縮流體的假設,選定適當的長短軸與節距來做比較,以確保流場與熱場為可收斂之場域。
    根據研究結果顯示,將內管形狀改變成扭曲橢圓管時,增加異形管長短軸比值或縮短節距長短時,都將增加其二次流強度,但是同時也將增加管內的壓降,因此將增加流場為克服阻力所做的工。本文透過不同的幾何探討二次流增強的強度與摩擦因子增加的現象,提供未來設計熱交換套管的基礎。

    In this thesis, D3Q15 model of the Lattice Boltzmann method has been used to simulate the flow field and heat transfer efficiency of double pipe with twisted oval tube. This thesis was discussed with constant inlet, outlet velocity and cross section area by adjusting the ratio between major axis and minor axis. The proper ratio was chosen in order to make sure the fluid field was convergent based on non-compressible hypothesis.
    The intensity of secondary flow and the amount of heat transfer were increased with increasing the ratio between major axis and minor axis and with decreasing the pitch. On contrast, It caused more pressure drop. In this way, The system required much more work to overcome the air resistance. In the thesis, it focused on the relationship between secondary flow and Darcy friction factor to be the foundation of double pipe heat exchanger design

    摘要 i Extended Abstract ii 誌謝 xiv 圖目錄 xvii 符號表 xxii 第一章 緒論 1 1.1研究背景與動機 1 1.2晶格波茲曼法文獻回顧 2 1.2.1晶格波茲曼法之演進 2 1.2.2晶格波茲曼法模型 3 1.3本文架構 4 第二章 晶格波茲曼法理論與模型 6 2.1晶格波茲曼法理論簡介 6 2.2三維晶格波茲曼模型 9 2.3三維晶格波茲曼熱模型 10 第三章 邊界條件與程式驗證 14 3.1 流場之完全反彈邊界 14 3.2 流場之速度與壓力邊界 15 3.3 流場之週期性邊界 18 3.4 溫度場邊界處理 21 3.5 格點判斷法 22 3.6 程式流程與驗證 22 3.6.1 程式流程 23 3.6.2 流場之驗證 23 3.6.3 強制對流之驗證 25 第四章 結果與討論 32 4.1 場協同原理介紹 32 4.2 橢圓管之座標轉換統御方程式 34 4.3 模型幾何與參數設定 35 4.4 網格獨立性測試 39 4.5 異形橢圓管流場與熱場分析 41 4.5.1 不同長短軸比值橢圓管流場分析 41 4.5.2 不同節距大小橢圓管流場分析與達西摩擦因子比較 51 4.5.3 不同節距大小橢圓管熱場分析 66 4.5.4 熱交換能力與平均場協同角比較 71 第五章 結論與未來展望 74 5.1 結論 74 5.2 未來展望 75 參考文獻 76

    [1]D. Arumuga Perumal & Anoop K. Dass. (2014). Lattice Boltzmann Simulation of Two- and Three-Dimensional Incompressible Thermal Flows.
    [2]D. Arumuga Perumal a,*, Anoop K. Dass. (2015). A Review on the development of lattice Boltzmann computation of macro fluid flows and heat transfer.
    [3]Y. H. Qian. (1993). Simulating Thermohydrodynamics with Lattice BGK Models
    [4]Qisu Zou and Xiaoyi He. (1997). On pressure and velocity boundary conditions for the lattice Boltzmann BGK model.
    [5]Morteza Khoshvaght-Aliabadi, Zahra Arani-Lahtari. (2016). Forced convection in twisted minichannel (TMC) with different cross section shapes: A numerical study.
    [6]Timothy J. Rennie, Vijaya G.S. Raghavan. (2006). Numerical studies of a double-pipe helical heat exchanger
    [7]R. L. Webb. (1980). Performance Evaluation Criteria For Use Of Enhanced Heat Transfer Surfaces In Heat Exchanger Design.
    [8]Ji-An Meng, Xin-Gang Liang *, Ze-Jing Chen, Zhi-Xin Li. (2004). Experimental study on convective heat transfer in alternating elliptical axis tubes.
    [9]Xiang-hui Tan, Dong-sheng Zhu, Guo-yan Zhou, Li-ding Zeng. (2012).
    Experimental and numerical study of convective heat transfer and fluid flow in twisted oval tubes.
    [10]Sheng Yang, Li Zhang*, Hong Xu. (2011). Experimental study on convective heat transfer and flow resistance characteristics of water flow in twisted elliptical tubes.
    [11]Xiaoyi He, Shiyi Chen, and Gary D. Doolen. (1997). A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit.
    [12]Cyrus K. Aidun and Jonathan R. Clausen. (2009). Lattice-Boltzmann Method for Complex Flows.
    [13]C. Shu, Y. Peng And Y. T. Chew. (2002). Simulation Of Natural Convection In A Square Cavity By Taylor Series Expansion- And Least Squares-Based Lattice Boltzmann Method.
    [14]Xiaoyi He1,2,* and Li-Shi Luo2,3. (1997). Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation.
    [15]何雅玲,王勇,李慶. 格子 Boltzmann 方法的理论及应用: 科学出版社,2009.
    [16]郭照立,鄭楚光. 格子 Boltzmann 方法的原理及应用: 科学出版社,2009.
    [17]廖全,李隆鑑,崔文智. 不可壓縮流體週期性流動格子波爾茲曼的處理,2010.

    無法下載圖示 校內:2023-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE