簡易檢索 / 詳目顯示

研究生: 徐子兼
Hsu, Tzu-Chien
論文名稱: 核廢料深層處置周圍回填材料之熱力-水力-力學耦合行為之研究
Coupled Thermo-Hydro-Mechanical Analysis of Neighboring Materials on the Geological Disposal of Nuclear Waste
指導教授: 陳昭旭
Chen, Chao-Shi
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 134
中文關鍵詞: 熱力-水力-力學耦合(THM )FLAC3D核廢料
外文關鍵詞: geological disposal of nuclear waste, coupled T-H-M behaviors, FLAC3D
相關次數: 點閱:131下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 核能是一個可以提供穩定能源的方式,但是核能所產生的核廢料對人類的生活環境具有威脅性,因此須以能確保長期隔絕之方式加以處理。經過世界各核能使用先進國家之研究顯示,較穩定且安全的處置法為深層地質處置(Deep Geological Disposal)。
    以核廢料深層處置為基本概念,並參考瑞典之相關研究,考慮膨潤土與回填材料所具備之熱性質、水力特性及力學特性,由於深層岩體之溫度、水流及應力為相互影響,故在評估深層岩體時,應採取熱力-水力-力學耦合 (Thermo-Hydro-Mechanical Coupling ,T-H-M)之方式以探討其間之關係,藉由FLAC3D數值分析軟體分析深覆蓋最終處置場之周圍岩體,選擇花崗岩性之母岩為模擬場址,設計單孔及雙孔處置坑,比較核廢料放置與未放置時,處置場周圍的岩體與材料在受到核廢料罐放置之影響後的發展行為。
    本研究發現於溫度分佈中,經過T-H-M耦合模擬之岩體溫度有向上並加速向外擴張之現象,而T-M耦合模擬之深層岩體為熱傳導形式所主導,其溫度呈現等量向外擴張之趨勢與經T-H-M耦合分析之現象不同。深層處置場之應力分布主要區域分別位於隧道頂拱、側邊及底部與貯存坑口周圍部分,在施工時應加強此區域以防止破壞。

    Deep geological disposal is generally accepted as the most promising method for the permanent disposal of high-level nuclear waste. To confirm whether an underground repository design is mechanically stable or not, it is necessary to evaluate the stability of the repository under different conditions. In this study, a numerical analysis was carried out for the design parameters as well as site-parameters to determine the important parameters from the stability point of view. It was assumed that the repository is constructed in a deep underground granite rock, which is considered as one of host rocks in Taiwan.
    This study presents the methodology in which a computer code FLAC3D (Fast Lagrangian Analysis of Continua) is executed for coupled thermal–hydraulic–mechanical (THM) analysis of fluid flow, heat transfer, and deformation in bedrocks. The FLAC3D is a widely used commercial code that is designed for rock and soil mechanics with thermo, mechanical and hydro mechanical interaction.
    In order to understand the deep disposal (500m) of high-level nuclear waste on the THM behaviors, we consider the following 2 simple situations: (i) single-hole for vertical disposal, and (ii) double-hole for vertical disposal. We analyze the thermal conductivity at 5, 10, 50 and 100 years for the two situations, and discuss the influence of host rock on the temperature, stress and the direction of fluid flow.
    The result shows that T-H-M coupling of the host rock temperature will expand outwards more than T-M coupling. And the temperature degree of rock by T-H-M coupling is less than the T-M coupling; Tension area is mainly distributed in the bottom of the tunnel, crown of the tunnel and the area surround the disposal; fluid flow has the convection in the rock and related to the temperature.

    摘要 I 英文摘要 II 致謝 VIII 目錄 IX 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1.1前言 1 1.2 研究目的 4 1.3 研究內容 5 第二章 文獻回顧 7 2.1 核廢料之處置概念 7 2.2 核廢料深層處置之相關研究 13 2.3 受熱岩體之力學行為 22 2.4飽和岩層受熱後之水力學行為 23 2.5岩體之熱力-水力-力學(THM)行為 26 第三章 理論模式 31 3.1 岩體之基本性質 31 3.1.1基本熱力學性質 31 3.1.2 基本水力學性質 39 3.2 熱傳導理論 41 3.2.1 卡式直角座標系 43 3.2.2 圓柱直角座標系 44 3.2.3 球體座標系 44 3.3熱對流理論 44 3.4 水流體傳輸理論 47 3.5 有限差分法(FDM)之數值熱傳輸分析理論 49 3.5.1 由微分方程式推導 49 3.5.2 由能量平衡推導 51 3.5.3能量方程式微分推導 52 3.6 FLAC3D熱傳模式理論 55 3.6.1 基本定義 55 3.6.2 能量平衡方程式 56 3.6.3 傳輸定律 57 3.6.4 初始條件與邊界 58 3.6.5 力學耦合:熱應變 59 3.7 FLAC3D流體傳輸模式理論 59 3.7.1基本定義 59 3.7.2流體連續方程式- 60 3.7.3 流體傳輸定律 60 3.7.4流體初始條件與邊界 61 3.7.5流固耦合 61 3.8 熱衰減公式 61 第四章 數值分析方法 63 4.1FLAC3D之概述 63 4.2FLAC3D之基本方程式 64 4.3 FLAC3D之運算程序 67 4.4 FLAC3D熱傳模式特點 69 4.5 FLAC3D熱傳分析模式之數值方法 69 4.6 FLAC3D之基本分析架構 82 4.7 FLAC3D之實際分析步驟 83 第五章 案例模擬與結果分析 85 5.1尺寸詳細資料與網格 85 5.1.1 模型之橫斷面與尺寸 85 5.1.2 網格之設計 88 5.1.3 邊界條件設定 89 5.1.3.1邊界範圍 89 5.1.3.2邊界束制 90 5.1.4初始溫度設定 90 5.1.5 初始應力設定 91 5.1.6 材料參數設定 94 5.2模擬案例形式 95 5.3 結果分析 98 5.3.1流固耦合 98 5.3.2 溫度分布 99 5.3.3溫度與歷時之關係 103 5.3.4 溫度與距離之關係 106 5.3.5 應力分布 111 5.3.6 水流情形 119 第六章 結論與建議 124 6.1 結論 124 6.2 建議 128 參考文獻 129

    1. 洪錦雄、莊文壽、劉凌振、董家寶,(2001),我國用過核燃料長程貯存潛在母岩特性調查與評估階段-前二年計畫,功能/安全評估研究-建立深層貯存場初期功能評估技術(I),核能研究所。
    2. 高世鍊,(1998),開挖中隧道變形行為之初步研究,國立成功大學土木工程研究所碩士論文。
    3. 許俊賢,(2004),深層岩體熱力-水力-力學耦合行為之研究,國立成功大學資源工程研究所碩士論文。
    4. 戴豪君,(2003),深層岩體熱力-水力-力學耦合行為之初步研究,國立成功大學資源工程研究所碩士論文。
    5. 鍾柏仁,2001),核廢料深層貯存進場岩石熱力學行為初步研究,國立成功大學資源工程研究所碩士論文。
    6. 洪哲宇,(2013),核廢料深層處置周圍岩體之熱力-水力-力學,國立成功大學資源工程研究所碩士論文。
    7. 胡哲瑋,(2012),核廢料深層處置圍岩耦合熱-水力分析之研究,國立成功大學資源工程研究所碩士論文。
    8. 吳佩蓉,(2011),核廢料地下處置場之岩石材料參數對工程障蔽飽和度影響分析,國立中央大學土木工程研究所碩士論文。
    9. 鄺寶山、王文禮,(1993),FLAC程式於隧道工程之實例分析,地工技術,第41期,pp. 50-61。
    10. 台灣電力公司,(2009),用過核子燃料最終貯存計畫-潛在貯存母岩特性調查與評估階段,成果報告。
    11. 潘國樑,應用環境地質學,地景出版社,1993。
    12. 行政院原子能委員會放射性物料管理局,(http://fcma.aec.gov.tw/chs_main.htm)
    13. 林擎天,多孔介質之三維彈性理論解析,中華工學院土木工程研究所碩士論文,1994。
    14. 賴成銑,洪浩源,我國用過核燃料長程處置潛在母岩特性調查與評估階段-發展初步功能/安全評估模式(第一年計畫)-地質圈評估技術,核能研究所,2002。
    15. 林士哲,金崙地區溫泉資源調查分析之研究,國立成功大學資源工程研究所碩士論文,2003。
    16. 王俊明,高溫下脆性岩石之力學與物理性質,國立交通大學土木工程研究所碩士論文,1995。
    17. Scheidegger, A.E., The Physics of Flow through Porous Media, University of Toronto Press, Toronto, 1974.
    18. Bejan, A., Lage, J.L., Heat transfer from a surface covered with hair.Convective Heat and Mass Transfer in Porous Media (eds. Kakac, S., Kilkis, B., Kulacki, F.A., Arinc., F.), Kluwer Academic, Dordrecht, pp.823-845, 1991.
    19. Özisik, M.N., Heat Conduction. 2nd Edition, John Wiley & Sons Inc., N.Y., 1993.
    20. Wai, R.S.C., Lo, K.Y. and Rowe, R.K., Thermal Stress Analysis in Tock with Nonlinear Properties. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. Vol. 19, pp.211-220, 1982.
    21. Jumikis, A.R., Rock Mechanics. 2nd Edition, Trans. Tech. Pubns., Germany, 1983.
    22. Hanley, E.J., Dewitt, D.P. and Roy, R.F., The Thermal Diffusivity of Eight Well-Characterized Tocks for the Temperature Range 300-1000°K. Engineering Geology, Vol. 122, pp.31-47, 1978.
    23. Aversa, S. and Evangelista, A., Thermal Expansion of Neapolitan Yellow Tuff. Rock Mech. & Rock Eng., Vol. 26, No. 4, pp.281-306, 1993.
    24. Millard, A., Rejeb, A., Chijimatsu, M., Jing, L., De Jonge, J., Kohlmeier, M., Nguyen, T.S., Rutqvist, J., Souley, M. and Sugita, Y., Numerical study of the THM effects on the near-field safety of a hypothetical nuclear waste repository-BMT1 of the DECOVALEX III project. Part 2: Effects of THM coupling in continuous and homogeneous rocks, International Journal of Rock Mechanics and Mining Sciences, 2005.
    25. KBS, Final Storage of Spent Nuclear Fuel—KBS-3. Swedish Nuclear Fuel Supply Co./Division KBS, Stockholm, Sweden, 1983.
    26. Bauer, S.J. and Johnson, B. (1979) Effects of Slow Uniform Heating on the Physical Properties of the Westerly and Charcoal Granites, Proc. 20th Symp. on Rock Mech., Austin, Texas, ASCE, pp.7-18.
    27. Dutt, M. S., Saini, T. N., Singh, A. K., Verma, R. K., Bajpai.(2012) Analysis of thermo-hydrologic-mechanical impact of repository for high-level radioactive waste in clay host formation: an Indian reference disposal system. Environ Earth Sci 66:2327–2341
    28. Chijimatsu, M., Fujita, T., Sugita, Y., Amemiya, K., Kobyyashi, A. (2001) Field experiment, results and THM behavior in the Kamaish mine experiment. International Journal of Rock Mechanics and Mining Sciences, Vol.38, pp.67-78.
    29. Crank, J. (1975) The Mathematics of Diffusion: 2nd Edition, Oxford: Clarendon Press.
    30. Félix, B., Lebon, P., Miguez, R. and Plas, F. (1996) A review of the ANDRA’s research programs on the thermo-hydro-mechanical behavior of clay in connection with the radioactive waste disposal project in deep geological formations. Engineering Geology, Vol. 41, pp.35-50.
    31. Goy, L., Fabre, D. and Menard, G. (1996) Modelling of Rock Temperatures for Deep Apine Tunnel Projects, Rock Mech. Rock Eng., Vol. 29, NO.1, pp.1-18.
    32. Hakami, E. and Olofsson, O. (1999) Thermo-Mechanical Effects Around A Radioactive Waste Repository, FLAC and Numerical Modeling in Geomechanics, pp.311-316.
    33. Heuze, F.E., (1983) High Temperature Mechanical, Physical and Thermal Properties off Granitic Rock-A Review. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 20, No. 1, pp.3-10.
    34. Hoek, E. and Brown, E.T. (1980) Empirical Strength Criterion for Rock Masses. J. of the Geotechnical Engineering, ASCE, Vol. 106, NO. GT9, pp.1013-1035.
    35. Hoek, E. and Brown, E.T. (1997) Empirical Strength Criterion for Rock Masses Strength, Int. J. of RockMech. Sci. & Geomech. Abstr., Vol. 34, pp. 1165-1186.
    36. Hokmark, H. (1998) Acceptance of Emplacement Hole Positions-Stage 1 Thermo mechanical Study, Engineering Geology, Vol. 49, pp.215-222.
    37. Itasca Consulting Group, Inc. (1994) Fast Lagrangian Analysis of Continua in 3 Dimensions User's Manual. Minneapolis, Minnesota, U.S.A.
    38. Jaeger, C. (1979) Rock Mechanics and Engineering, 2nd Edition, Cambridge Univ., press.
    39. KAERI (2000) The 2000 Joint Workshop on High-Level Radwaste Disposal Between Korea and Japan, Korea.
    40. Mahtab, M.A. and Wiles, T. (1980) Immobilized Waste Vault: Room-and-Pillar Thermal Rock Mechanics Analyses, AECL TR-54.
    41. Nowacki, W. (1962) Thermo elasticity, New York: Addison-Wesley.
    42. Onofrei, C., Gray, M. (1996) Modeling hydro-thermo-mechanical behavior of engineered clay barriers–Validation phase, Engineering Geology, Vol. 41, pp.301-318.
    43. Pruess, K., Oldenburg, C., Moridis, G. (1999) TOUGH2 User’s Guide, Version 2.0. Earth Sciences Division, Lawrence Berkeley National Laboratory.
    44. Rutqvist, J., Börgesson, L., Chijimatsu, M., Nguyen, T.S., Jing, L., Noorishad, J., Tsang, C.-F. (2001) Coupled thermo-hydro-mechanical analysis of a heater test in fractured rock and bentonite at Kamaishi Mine–comparison of field results to predictions of four finite element codes, International Journal of Rock Mechanics and Mining Sciences, Vol. 38, pp.129-142.
    45. Rutqvist, J., Tsang, C. F. (2003), Analysis of thermal-hydrologic-
    mechanical behavior near an emplacement drift at Yucca Mountain. Journal of Contaminant Hydrology, Vol. 62-63, pp.637-652.
    46. Rutqvist, J., Wu, Y-S., Tsang, C.-F., and Bodvarsson, G. (2002) A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock, International Journal of Rock Mechanics and Mining Sciences, Vol.39, pp.429-442.
    47. SKB, (1999) Deep Repository for Spent Nuclear Fuel: SR 97 Post-Closure Safety, KBS, Sweden.
    48. SKI, (2007) DECOVALEX-THMC Project Task A Influence of near field coupled THM phenomena on the performance of a spent fuel repository, Sweden.
    49. Tiktinsky, D.H. (1988) Numerical Parametric Sensitivity Study of Thermal and Mechanics Properties for A High Level Nuclear Waste Repository, Proc. of the 29th U.S. Symp. On Rock Mech., pp.429-439.
    50. Tsang, C.-F., Stephansson, O., and Hudson, J.A. (2000) A discussion of thermo-hydro-mechanical (THM) processes associated with nuclear waste repositories, International Journal of Rock Mechanics and Mining Sciences, Vol.37 pp.397-402.
    51. Tsui, K.K., Lee, C.F., Tsai, A. and Harris, N.L. (1982) Thermo mechanical Modeling of A Nuclear Waste Disposal Vault in Crystalline Hard Rock, Proc. of the 4th Int. Conference on Numerical Methods in Geomech, Balkema.
    52. Rutqvist, J., (2011) Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations, Comtents & Geosciences, Vol.37 pp.739-750 .

    下載圖示 校內:2019-08-27公開
    校外:2019-08-27公開
    QR CODE