簡易檢索 / 詳目顯示

研究生: 顏秀容
Yen, Hsiu-Jung
論文名稱: 過渡金屬鈷摻雜對鐵酸鉍性質的影響
Effects of Cobalt Substitution on Bismuth Ferrite
指導教授: 齊孝定
Qi, Xiaoding
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 106
中文關鍵詞: 鐵酸鉍能隙
外文關鍵詞: bismuth ferrite, band gap
相關次數: 點閱:79下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本實驗藉由固態燒結法及射頻磁控濺鍍兩種製程製備摻鈷鐵酸鉍樣品。其中固態燒結以氧化物粉末混合,再經過燒結,製備塊材樣品。已知在固態燒結製程中鐵酸鉍相的生成容易伴隨其他雜相如 Bi2Fe4O9和 Bi25FeO40 的生成,所以藉由調整燒結參數,去得到儘可能純的鐵酸鉍相,最後再用酸洗去除殘留的雜相。隨著鈷摻雜濃度的提高,雜相 Bi2Fe4O9 的比例反而會相對降低。另一方面以氧化物粉末混合,製做射頻磁控濺鍍的靶材,控制其濺鍍條件,使其在鍍有白金的矽基板和導電玻璃 FTO 上成相,可獲得沒有雜相的鐵酸鉍薄膜。
      藉由分光光譜儀測量薄膜樣品的吸收光譜,經由換算後,推測摻鈷鐵酸鉍的能隙為 2.79 eV,與純鐵酸鉍的理論值幾乎相同。藉由光致發光量測的發光光譜, 在 380-489nm波長之間可觀察到若干發光峰, 其中450nm為導帶到價帶之躍遷, 469nm為 Bi2+能階到價帶之躍遷, 其他發光峰之起源尚未明確。在電性質量測方面,藉由電阻對溫度變化的測量,可觀察到鐵酸鉍的電阻有隨溫度上昇而下降的現象,且電阻的變化藉由公式計算後可知,摻鈷的鐵酸鉍至少具有兩個不同的活化能,可能和鐵酸鉍內部缺陷或摻雜離子形成的能階有關,但這兩個能階似乎與光致發光光譜上觀察到的未知躍遷無關。在磁性量測方面,藉由震動樣品磁力計測量摻鈷鐵酸鉍樣品的M -H曲線,可知隨著鈷摻雜量的增加,飽和磁化量 (Ms) 和矯頑磁力 (Hc) 都有增加的趨勢。磁場下的熱重分析顯示樣品的磁化量在400 ℃時既已消失,不可能來源於磁性雜相如 CoFe2O4 (TC=520 ℃),Fe3O4 (Tc= 585 ℃) 和 -Fe2O3 (Tc=590 ℃) 等。其磁化量的增強可能與Co離子摻雜對鐵酸鉍自旋排列的影響有關。

      Cobalt doped bismuth ferrite were synthesized by both solid state reaction and RF magnetron sputtering. In the solid state sintering process, the formation of BiFeO3 phase was often accompanied by the appearance of some secondary phases like Bi2Fe4O9 and Bi25FeO40. To avoid the problem, various sintering conditions were tried in order to get the most pure phase possible and then, the remaining trace of any secondary phase was washed away using some acid solution. It was found that the relative amount of the secondary phase, Bi2Fe4O9, was reduced by the Co doping. Similar sintering process was used to make the Co doped BiFeO3 targets for the RF magnetron sputtering of thin film samples. Under the optimum growth parameters, the films of pure BiFeO3 phase could be grown on the Pt coated silicon and the conductive FTO glass substrates, without the presence of any secondary phase.
      The absorption spectra of Co-doped BiFeO3 films were measured by the UV-Vis spectrometry, from which the band gap was calculated to be 2.79 eV, almost exactly the same as the theoretical value for the un-doped pure BiFeO3. Photoluminescence spectra were also measured and a number of broad emission peaks were observed over the wavelength range 380-489 nm, among which the 450 nm emission came from the inter-band transition and the 469 nm emission was probably due to the transition from the Bi2+ defect level to the valence band. The origin of other emissions is not clear yet. In the electric conduction measurements, the resistivity of the BiFeO3 samples was found to decrease with the increasing temperature. The Arrhenius plots of conductivity vs. temperature showed that there existed at least two activation energies, arising from the defect or dopant energy levels inside the band gap. However, these two energy levels seemed not to be relevant to the unknown emissions observed in the photoemission spectra. In the magnetic measurements, the vibration sample magnetometry was employed to measure the M-H curves, which showed that both the saturation magnetization and the coercivity increased with the Co doping level. Thermal gravity analysis under applied magnetic field showed that the magnetization of the Co doped samples disappeared at 400 C, manifesting that it could not possibly come from the magnetic secondary phases such as CoFe2O4 (TC= 520 C), Fe3O4 (Tc= 585 C) and -Fe2O3 (Tc= 590 C). It was more likely that the Co doping somehow modified the spin arrangements in BiFeO3.

    摘要 I Abstract III 誌謝 V 目錄 VI 表目錄 X 圖目錄 XI 第一章 緒論 1 第二章 相關文獻 3 2-1 複鐵式材料簡介 3 2-1-1 複鐵式材料結構 3 2-1-2 鐵電材料電滯曲線與介電特性 8 2-2 磁性質簡介 12 2-2-1 磁性原理及介紹 12 2-2-2 磁滯曲線 16 2-3 電性質簡介 17 2-3-1 極化機制與頻率特性 17 2-3-2 漏電流機制 20 2-3-3 鐵電光伏效應 24 2-4 鐵酸鉍簡介 26 2-4-1 晶體結構 26 2-4-2 鐵酸鉍電性質 29 2-4-3 鐵酸鉍磁性質 31 第三章 實驗流程介紹 32 3-1 實驗材料與儀器 32 3-1-1 實驗藥品 32 3-1-2 實驗設備 32 3-1-3 實驗儀器 33 3-2 實驗流程 35 3-2-1 固相燒結 37 3-2-2 基板清潔步驟 38 3-3 分析儀器 39 3-3-1 X-ray 粉末繞射儀 39 3-3-2 表面輪廓儀 40 3-3-3 掃描式電子顯微鏡 40 3-3-4 多功能電表 40 3-3-5 光致光光譜儀 40 3-3-6 紫外可見光分光光譜儀 42 3-3-7 X光光電子能譜儀 42 3-3-8 振動樣品磁力計 42 第四章 結果與討論 44 4-1 樣品製備與分析 44 4-1-1 靶材製備與分析 44 4-1-2 薄膜樣品製備與分析 46 4-2 塊材製備與燒結 54 4-2-1 不同燒結溫度對結構影響 56 4-2-2 不同氣氛下燒結對結構影響 60 4-2-3 不同燒結過程對結構影響 63 4-2-4 以酸洗純化鐵酸鉍 67 4-3 表面形貌與成分分析 69 4-4 穿透光譜分析 79 4-5 激發與發光光譜分析 81 4-6 磁性量測 88 4-7 電滯曲線量測 92 4-8 電阻量測 93 第五章 結論 99 第六章 參考文獻 100

    1.B. Prince, “Emerging Memories-Technologies and Trend”, Kluwer Academic Publishers, Massachusetts, (2002).
    2.R. Ramesh, “Thin Film Ferroelectric Materials and Devices”, Kluwer Academic, Boston, (1997).
    3.J.F. Scott, and C.A. Araujo, “Ferroelectric Memory”, Science, 246, 1400, (1989).
    4.富士通與東京工業大學聯手開發FeRAM的新型材料,電子工程專輯, (2006).
    5.V.A. Murashov, D.N. Rakov, V.M. Ionov, I.S. Dubenko, Y.V. Titov and V.S. Gorelik, “Magnetoelectric (Bi,Ln)FeO3 compounds: Crystal growth, structure and properties”, Ferroelectrics, 162, 11 (1994).
    6.Y.F. Popov, A.M. Kadomtseva, G.P. Vorobev, and A.K. Zvezdin, “Discovery of the linear magnetoelectric effect in magnetic ferroelectric BiFeO3 in a strong magnetic field”, Ferroelectrics, 162, 135 (1994).
    7.X. Qi, P.C. Tsai, Y.C. Chen, Q.R. Lin, J.C.A. Hwang, W.C. Chen, I.G, Chen, “Optical growth windows of multiferroic BiFeO3 films and characteristics of ferroelectric domain structures”, Thin Solid Films, 517, 5862 (2007).
    8.R. Nechache, C. Harnagea, and A. Pignolet, “Growth, structure, and properties of epitaxial thin films of first-principles predicted multiferroic Bi2FeCrO6 “, Appl. Phys. Lett., 89, 102902 (2006).
    9.F. Azough, R. Freer, M. Thrall, R. Cernik, F. Tuna, and D. Collison, “Microstructure and properties of Co-, Ni-, Zn-, Nb- and W-modified multiferroic BiFeO3 ceramics”, J. Eur. Ceram. Soc., 30, 727 (2010).
    10.V.M. Fridkin, “Bulk photovoltaic effect in noncentrosymmetric crystals“, Crystallogr. Rep., 46, 654 (2001).
    11.S.J. Clark, and J. Robertson, “Band gap and Schottky barrier heights of multiferroic BiFeO3”, Appl. Phys. Lett., 90, 132903 (2007).
    12.S. Li, Y.H. Lin, B.P. Zhang, J.F. Li, and C.W. Nan, “BiFeO3/TiO2 core-shell structured nanocomposites as visible-active photocatalysts and their optical response mechanism”, J. Appl. Physi., 105, 054310 (2009).
    13.F. Gao, X.Y. Chen, K.B. Yin, S.A. Dong, Z.F. Ren, F. Yuan, T. Yu, Z.G. Zou, and J.M. Liu, “Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles“, Adv. Mat., 19, 2889 (2007).
    14.F. Gao, Y. Yuan, K. F. Wang, X. Y. Chen, F. Chen, J.M. Liu, Z.F. Ren, “Preparation and photoabsorption characterization of BiFeO3 nanowires”, Appl. Phys. Lett., 89, 102506 (2006).
    15.呂正傑,詹世雄, “鐵電記憶體簡介”,奈米通訊,第五卷第四期(1998).
    16.鄭佩慈, “鐵電材料之特性與應用”,儀器科學中心簡訊68期, (2005).
    17.J.J. Burton and R.C. Carter, “Advance Materials in Catalysis”, Academic Press, New York, (1977).
    18.Y. Xu, “Ferroelectric Materials and their Applications”, North Holland, Amsterdam, (1991).
    19.G. Shirane, F. Jona, and R. Pepinsky, “Some Aspects of Ferroelectricity”, Proc. IRE., 42, 1738 (1955).
    20.W.D. Kingery, H.K. Bowen, and D.R. Uhlmann, “陶瓷材料概論”, 皢園出版社, 臺北市, (1988年).
    21.曲遠方, “功能陶瓷材料”, 皢園出版社, 臺北市, (2006).
    22.X. Qi, J. Dho, R. Tomov, M.G. Blamire, and J.L. MacManus-Driscoll, “Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3”, Appl. Phys. Lett. (2005).
    23.洪健翔, 碩士論文, “以光致螢光的方法對δ -doped 之Ⅲ -Ⅴ 族半導體之研究”, 國立中山大學物理所, (2001).
    24.B. Ruette, Master's Thesis, “Induced Phase Transition in Magnetoelectric BiFeO3 Crystals, Thin-layers and Ceramics”, Virginia Polytechnic Institute and State University, (2003).
    25.C. Kittel, “Introduction to Solid State Physics 7th ed.”, Wiley, New York, (1996).
    26.J.A.C. Bland and B. Heinrich, “Ultrathin Magnetic Structure”, Springer, New York, (1994).
    27.B.H. Park, B.S. Kang, S.D. Bu, T.W. Noh, J. Lee, and W. Jo, “Lanthanum-substituted bismuth titanate for use in non-volatile memories”, Nature, 401, 682 (1999).
    28.M.E. Lines and A.M. Glass, “Principles and applications of ferroelectrics and related materials”, Oxford University, New York, (2001).
    29.M. Barsoum, “Fundamentals of Ceramics”, McGraw Hill, New York, (1994).
    30.林麗娟, “X光繞射原理及其應用” 工業材料86期, (1994).
    31.S.M. Sze, “Physics of Semiconductor Devices”, Wiley, New York, (1981).
    32.I. Stolichnovb and A. Tagantsev, “Space-charge influenced-injection model for conduction in Pb(ZrxTi1-x)O3 thin films”, J. Appl. Physi., 84, 3216 (1998).
    33.K.Y. Yun, M. Noda, and M. Okuyama, “Prominent ferroelectricity of BiFeO3 thin films prepared by pulsed-laser deposition”, Appl. Phys. Lett., 83, 3981 (2003).
    34.F. Kubel and H. Schmid, “Structure of a ferroelectric and ferroelastic monodomain crystal of the pervskite BiFeO3”, Acta crystallogr., Sec. B., 46, 698 (1990).
    35.J.M. Moreau and C. Michel, “Ferroelectric BiFeO3 X-ray and neutron diffraction study”, J. Phys. Chem. Solid, 32, 1315 (1971).
    36.O. Muller and R. Roy, “The Major Ternary Structural Families”, Springer, New Work, (1974).
    37.N.N. Krainik, N.P. Khuchua, V.V. Zhdanova, and V.A. Esveev, “Phase transitions in BiFeO3”, Sov. Phys., Solid State, 8, 654 (1966).
    38.M.I. Morozov, N.A. Lomanova, and V.V. Gusarov, “Specific features of BiFeO3 formation in a mixture of bismuth(III) and iron(III) oxides”, Russian Journal of General Chemistry, 73, 1676 (2003).
    39.V. M. Fridkin, “Bulk photovoltaic effect in noncentrosymmetric crystals”, Crystallography Reports, Vol. 46, No. 4, 654 (2001).
    40.J.R. Teague, R. Gerson, and W.J. James, “Dielectric hysteresis in single crystal BiFeO3”, Solid State Commun., 8, 1073 (1970).
    41.K.Y. Yun, M. Noda, and M. Okuyama, H. Saeki, H. Tabata, and K. Saito, “Structural and multiferroic properties of BiFeO3 thin films at room temperature”, J. Appl. Phys., 96, 3399 (2004).
    42.Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.M. Liu, and Z.G. Liu, “Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering”, Appl. Phys. Lett., 84, 1731 (2004).
    43.V.R. Palkar, K.G. Kumara, S.K. Malik, “Observation of room-temperature magnetoelectric coupling in pulsed-laser-deposited Bi0.6Tb0.3La0.1FeO3 thin films”, Appl. phys. lett., 84, 2856 (2004).
    44.Y.E. Roginskaya, Y.Y. Tomashpol’skii, Y.N. Venevtsev, V.M. Petrov, and G.S. Zhdanov, “The Nature of the Dielectric and Magnetic Properties of BiFeO3”, Sov. Phys. JETP., 23, 47 (1966).
    45.H. Gu, J.M. Xue, X. Gao, and J. Wang, “Doping effect of BiFeO3 in layered pervoskite SrBi2Nb2O9”, Mater. Chem. Phys., 75, 105 (2002).
    46.R.T. Smith, G.D. Achenbach, R. Gerson, and W.J. James, “Dielectric Properties of Solid Solution of BiFeO3 with Pb(Ti,Zr)O3 at High Temperature and High Frequency”, J. Appl. Physi., 39, 70 (1968).
    47.B. Ruette, S. Zvyagin, A.P. Pyatakov, A. Bush, J.F. Li, V.I. Belotelov, A.K. Zvezdin, and D. Viehland, “Magnetic-field induced phase transition in BiFeO3 observed by high-field electron spin resonance: cycloidal to homogenous spin order”, Physical Review B, 69, 064114 (2004).
    48.A.A. Gippius, D.F. Khozeev, E.N. Morozova, and A.V. Zalessky, “Observation of spin modulated magnetic structure at Bi- and Fe-sites in BiFeO3 by nuclear magnetic resonance“, Phys. Status Solidi. A, Appl. Res., 196, 221 (2003).
    49.劉純宇, 碩士論文, “BiFeO3 鐵電薄膜之製備與特性研究,成功大學材料科學與工程學系”, (2005).
    50.張文智, 碩士論文, “利用射頻磁控濺鍍系統製備 BiFeO3 複鐵式薄膜及相關物性研究”, 成功大學材料科學與工程學系, (2008).
    51.M.I. Morozov, N.A. Lomanova, and V.V. Gusarov, “Specific Features of BiFeO3 Formation in a Mixture of Bismuth (III) and Iron(III) Oxides”, Russian Journal of General Chemistry, 73, 11 (2003)
    52.M.A. Butler, “Photoelectrolysis and physical properties of the semiconducting electrode WO2”, J. Appl. Physi., 1914, 48 (1977).
    53.蔡泊舟, 碩士論文, “利用 sol-gel 法製備鐵酸鉍薄膜及不同燒結條件對鐵酸鉍薄膜性質的影響”, 成功大學材料科學與工程學系, (2008).
    54.X. Yu and X. An, “Enhanced magnetic and optical properties of pure and (Mn,Sr) doped BiFeO3 nanocrystals”, Solid State Commun., 149, 711 (2009).
    55.I. Sosnowska, N.T. Peterlinneumaier and E. Steichele, “Spiral magnetic ordering in bismuth ferrite”, J. phys. C. Solid State Phys., 15, 4835 (1982).
    56.Y.H. Lee, J.M. Wu and C.H. Lai, “Influence of La doping in multiferroic properties of BiFeO3 thin films”, Appl. Phys. Lett., 88, 042903 (2006).
    57.H.D. Zhou, J.C. Denyszyn, and J.B. Goodenough, “Effect of Ga doping on the multiferroic properties of RMn1−xGaxO3 (R=Ho,Y)”, Phys. Rev. B, 72, 224401 (2005).
    58.W.S. Kim, Y.K. Jun, K.H. Kim, and S.H. Hong, “Enhanced magnetizationin Co and Ta-substituted BiFeO3 ceramics”, J. Magn. Magn. Mater., 321, 3262 (2009).
    59.T.H. Gfroerer, “Photoluminescence in Analysis of Surfaces and Interfaces”, John Wiley & Sons Ltd, Chichester, 9209 (2000).
    60.Z. Quan, H. Hu, S. Xu, W. Liu, G. Fang, M. Li, X. Zhao, “Surface chemical bonding states and ferroelectricity of Ce-doped BiFeO3 thin films prepared by sol–gel process”, J Sol-Gel Sci Technol 48, 261 (2008).
    61.Z. Zhou, Y. Zhang, Z. Wang, W. Wei, W. Tang, J. Shi, R. Xiong, “Electronic structure studies of the spinel CoFe2O4 by X-ray photoelectron spectroscopy”, Applied Surface Science 254, 6972 (2008).
    62.M. Qin, K. Yao, and Y. C. Liang, “ High efficient photovoltaics in nanoscaled ferroelectric thin films” Appl. Phys. Lett, 93, 122904 (2008).
    63.D.K. Mishra and X. Qi, “Energy levels and photoluminescence properties of nickel-doped bismuth ferrite “Journal of Alloys and Compounds, (2010).

    無法下載圖示 校內:2020-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE