簡易檢索 / 詳目顯示

研究生: 李世宏
Li, Shyh-Hong
論文名稱: 奈米壓痕與奈米壓印之分子動力學模擬
Molecular Dynamics Simulation In Nanoindentation and Nanoimprint
指導教授: 黃吉川
Hwang, Chi-Chuan
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 73
中文關鍵詞: 聚甲基丙烯酸甲酯奈米壓痕奈米壓印分子動力學
外文關鍵詞: Molecular dynamics, Nanoimprint, PMMA, Nanoindentation
相關次數: 點閱:98下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   奈米壓痕一般可用來測得材料之彈性模數、硬度等機械性質外,最近的研究是以此奈米壓痕為基礎之機械系統,用以取代傳統以磁學或光學系統為基礎之資料儲存系統。另一項研究則是應用在奈米壓印微影製程技術,用以改善傳統光學微影技術受到光源繞射極限的限制,無法製作出比光源波長還小的線路,且易使其量產化。兩者概念皆是以機械式熱壓的方式分別使用原子力顯微鏡之碳針頭,來產生奈米壓痕進行讀寫的工作,及藉由鑄模下壓的方式使矽晶片上的光阻層(聚甲基丙烯酸甲酯, PMMA)產生變形,以便可得到所需設計之圖案。
      本文以分子動力學理論為基礎,來觀察在奈米壓痕過程中原子之暫態反應,文中並提出以機械功的觀念來深入探討在奈米壓痕過程中溫度對碳針頭與薄膜所造成之影響,以此作為實際製程改良與發展的依據。最後並建立起有機高分子PMMA的程式與其物理模型,可作為未來模擬奈米壓印之用途,以協助突破現今奈米壓印所遭遇之瓶頸。

      Nanoindentation could measure the elastic modulus、hardness and the mechanic properties of materials. In recent study, replacing the data storage system which is basic on the magnetic and optic system by nanoidentation. The other study is applying in nanoimprint lithography process to improve the traditional optical lithography and be more quantifiable. The tradition lithography is limited by diffraction, so can not fabricate the circuit smaller than wave length. Both above conceptions are using hot stamp by AFM diamond-like tip. Using nanoindentation to read and write the data in storage system and pressing the tip to deform the PMMA on silicon wafer to fabricate the circuit in lithography process.
      Herein, we using molecular dynamics to observe the atomic static response in nanoindentation. In the opinion of work, we discuss the temperature which influences the diamond-like and thin films in detail and improve the real process. Finally, establishing the PMMA physic model to simulate nanoimprint lithography in the future and help solving the obstacles to recent nanoimprint lithography.

    目錄‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧I 圖目錄‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧III 表目錄‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧V 符號說明‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧VI 第一章 緒論‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧1 1-1 奈米壓痕與奈米壓印技術簡介‧‧‧‧‧‧‧‧‧1 1-2 究動機與目的‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧7 1-3 分子動力學研究奈米壓痕相關之文獻回顧‧‧‧‧9 1-4 奈米壓印之文獻回顧‧‧‧‧‧‧‧‧‧‧‧‧‧11 1-5 分子動力學於PMMA液滴與矽基板界面行為研究 之文獻回顧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧13 1-6 本文架構‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧16 第二章 奈米壓痕之分子動力學模擬分析‧‧‧‧‧‧‧18 2-1 奈米壓痕物理模型之建立‧‧‧‧‧‧‧‧‧‧‧18 2-2 模擬流程‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧24 2-3 結果與討論‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧26 2-3-1 碳針溫度效應‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧26 2-3-2 基板溫度效應‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧29 第三章PMMA物理模型之建立‧‧‧‧‧‧‧‧‧‧‧‧40 3-1 PMMA與矽基板及其相互作用勢能介紹‧‧‧‧‧‧40 3-2 模擬流程‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧55 3-3 單鏈PMMA分子之形態穩定性分析‧‧‧‧‧‧‧‧57 3-4 PMMA液滴在矽基板上之動態行為分析‧‧‧‧‧‧59 第四章 結論與建議‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧61 4-1 結論‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧61 4-2 建議與未來展望‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧62 參考文獻‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧63 自述‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧72 著作‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧73

    【1】H. Ichimura and, I. Ando, “Mechanical properties of arc-evaporated CrN coatings: Part I — nanoindentation hardness and elastic modulus”, Surf. Coat. Tech. Vol. 145, 88(2001)
    【2】A. A. Volinsky, J. B. Vella, and W. W. Gerberich, “Fracture toughness, adhesion and mechanical properties of low-K dielectric thin films measured by nanoindentation”, Thin Solid Films Vol. 429, 201(2003)
    【3】S. Sundararajan, and B. Bhushan, “Development of AFM-based techniques to measure mechanical properties of nanoscale structures”, Sensor Actuat. A-Phys. Vol. 101, 338(2002)
    【4】H. C. Barshilia, and K. S. Rajam, “Characterization of Cu/Ni multilayer coatings by nanoindentation and atomic force microscopy”, Surf. Coat. Tech. Vol. 155, 195(2002)
    【5】P. Vetriger, J. Brugger, M. Despont, U. Drechsler, U. Durig, W. Haberle, M. Lutwyche, H. Rothuizen, R. Stutz, R.Widmer, and G. Binnig, “Ultrahigh density, high-data-rate NEMS-based AFM data storage system”, Microelectron. Eng. Vol. 46, 11(1999)
    【6】G. Binnig, M. Despont, U. Drechsler, W. Haberle, M. Lutwyche, and P. Vetriger, “Ultrahigh-density atomic force microscopy data storage with erase capability”, Appl. Phys. Lett. Vol. 74, 1329(1999)
    【7】M. Despont, J. Brugger, U. Drechsler, W. Haberle, M. Lutwyche, H. Rothuizen, R. Stutz, R.Widmer, G. Binnig, H. Rohrer, and P. Vetriger, “VLSI-NEMS chip for parallel AFM data storage”, Sensor Actuat. A-Phys. Vol. 80, 100(2000)
    【8】P. Vetriger, M. Despont, U. Drechsler, U. Durig, W. Haberle, M. Lutwyche, H. Rothuizen, R. Stutz, R.Widmer, and G. Binnig, “The "Millipede" - More than one thousand tips for future AFM data storage”, IBM J. Res. Develop. Vol. 44,323(2000)
    【9】S. Y. Chou, P. R. Krauss, and P. J. Renstorm, “Imprint of sub-25 nm vias and trenches in polymers”, Appl. Phys. Lett. Vol. 67, 3114(1995)
    【10】S. Y. Chou, “nanoimprint lithography”, U. S. patent, 5772905(1998)
    【11】J. Haisma, M. Verheijen, van den Heuvel and J. van den Berg, “Mold-assisted nanolithography: A process for reliable pattern replication”, J. Vac. Sci. Technol. B Vol. 14, 4124(1996)
    【12】A. Kumar, and G. M. Whitesides, “Features of gold having micrometer to centimeter dimensions can be formed through a combination of a stamping with an elastomeric stamp and an alkanethiol ink followed by chemical etching”, Appl. Phys. Lett. Vol. 63, 2002(1993)
    【13】J. M. Haile, “Molecular Dynamics Simulation, Elementary Methods ”, John Wiley&Sons, Inc (1992)
    【14】D. C. Rapaport,“ The Art of Molecular Dynamics Simulation ”, Cambridge University press (1995)
    【15】Daan Frenkel, Berend Smit, “Understanding Molecular Simulation, From Algorithms to Applications ”,Academic press (1996)
    【16】U. Landman, W. D. Luedtke, N. A. Burnham, and R. J. Colton, “Atomistic mechanisms and dynamics of adhesion, nanoindentation and fracture”, Science Vol. 248, 454(1990)
    【17】U. Landman, W. D. Luedtke, J. Ouyang, and T. K. Zia, “Nanotribology and the stability of nanostructures”, Jpn. J. Appl. Phys. Vol. 32, 1444(1993)
    【18】H. Rafii-Tabar, and Y. Kawazon, “Dynamics of atomically thin layers-surface interactions in tip-substrate”, Jpn. J. Appl. Phys. Vol. 32, 1394(1993)
    【19】K. Komvopoulos, and W. Yan, “Molecular dynamics simulation of single and repeated indentation”, J. Appl. Phys. Vol. 82, 4823(1997)
    【20】W. Yan, and K. Komvopoulos, “Three-dimensional molecular dynamics analysis of atomic-scale indentation”, Transaction of the ASME J. TRIBOL. Vol. 120, 358(1998)
    【21】A. Gannepalli, and S. K. Mallapragada, “Molecular dynamics studies of plastic deformation during silicon nanoindentation”, Nanotechnology Vol. 12, 250(2001)
    【22】P. Walsh, R. K. Kalia, A. Nakano, and P.Vashishta, “Amorphization and anisotropic fracture dynamics during nanoindentation of silicon nitride: a multimillion atom molecular dynamics study”, Appl. Phys. Lett. Vol. 77, 4332(2000)
    【23】P. Walsh, A. Omeltchenko, R. K. Kalia, A. Nakano, and P.Vashishta, “Nanoindentation of silicon nitride: a multimillion-atom molecular dynamics study”, Appl. Phys. Lett. Vol. 82, 118(2003)
    【24】H. Yu, J. B. Adams, and L. G. Jr, “Molecular dynamics simulation of high-speed nanoindentation”, Modelling Simul. Mater. Sci. Eng. 10, 319(2002)
    【25】H. Tan, A. Gilbertson, and S. Y. Cho, “Roller nanoimprint lithography”, J. Vac.Sci. Technol. B Vol.16, 3926(1998)
    【26】S. Zankovych, T. Hoffmann, J. Seekamp, J. U. Bruch, and C. M. S. Torres, “Nanoimprint lithography: challenges and prospects”, Nanothchnology Vol. 12, 91(2001)
    【27】C. Y. Cho, and L. J. Guo, “Polymer microring resonators fabricated by nanoimprint technique”, J. Vac. Sci. Technol. B Vol.20, 2862(2002)
    【28】Y. Hirai, S. Harana, S. Isaka, M. Kobayashi, and Y. Tanaka, “Nano-imprint lithography using replicated mold by Ni electroforming”, Jpn. J. Appl. Phys. Vol. 41, 4186(2002)
    【29】M. Heckele, W. Bacher, and K. D. Müller, “Hot embossing - The molding technique for plastic microstructures”, Microsyst. Technol. Vol. 4, 122(1998)
    【30】L. Lin, Y. T. Cheng, and C. J. Chiu, “Comparative study of hot embossed micro structures fabricated by laboratory and commercial environments”, Microsyst. Technol. Vol. 4, 113(1998)
    【31】L. J. Heyderman , H. Schift, C. David , J. Gobrecht, and T. Schweizer, “Flow behaviour of thin polymer films used for hot embossing lithography”, Microelectron. Eng. Vol.54, 229(2000)
    【32】C. Gourgon, C. Perret, G. Micouin, F. Lazzarino, J. H. Tortai, O. Joubert, and J. P. E. Grolier, “Influence of pattern density in nanoimprint lithography”, J. Vac. Sci. Technol. B Vol. 21, 98(2003)
    【33】L. Ressier, C. Martin, and J. P. Peyrade, “Atomic force microscopy study of micrometric pattern replica by hot embossing lithography”, Microelectron. Eng. Vol.54, 229(2002)
    【34】J. F. Padday, “Wetting, spreading, and adhesion”, Academic Press (1978)
    【35】L. H. Tanner, “The spreading of silicone oil drops on horizontal surfaces”, J. Phys. D Vol. 12, 1473(1979)
    【36】P. Ball, “Spreading it about”, Nature Vol. 338, 624(1989)
    【37】K. L. Mittal, “Contact angle, wettability and adhesion”, Utrecht, The Netherlands Tokyo, Japan(1993)
    【38】L. Chen, M. Ni, S. Jia, and X. Jia, “AFM observation of single-chain PMMA particle”, J. Macromol. Sci. B Vol. 37,339(1998)
    【39】J. X. Yang, and J. Koplik, “Molecular dynamics of drop spreading on a solid surface”, Phys. Rev. Lett. Vol. 67, 3539(1991)
    【40】J. X. Yang, and J. Koplik, “Terraced spreading of simple liquids on solid surfaces”, Phys. Rev. A Vol. 46, 7738(1992)
    【41】S. Bekink, S Karaborni, G. Verbist, and K. Esselink, “Simulation the spreading of a drop in the terraced wetting regime”, Phys. Rev. Lett. Vol. 76, 3766(1996)
    【42】C. C. Hwang , J. R. Ho and S. C. Lee, “Molecular Dynamics of a Liquid Drop Spreading in a Corner Formed by Two Planar Substrates”, Phys. Rev. E. Vol. 60, 5693(1999)
    【43】C. C. Hwang, Y. R. Jeng, Y. L. Hsu and J. G. Chang, “Molecular Dynamics Simulation of Microscopic Droplet spread on Rough Surfaces”, Jpn. J. Appl. Phys. Vol. 70, 2626(2001)
    【44】Q. Lio, J. Fu, and X. Jin, “Single-chain polystyrene particles adsorbed on the silicon surface: a molecular dynamics simulation”, Langmuir Vol. 15, 7795(1999)
    【45】J. Tersoff, “New empirical model for the structural properties of silicon”, Phys. Rev. Lett. 56, 632 (1986)
    【46】J. Tersoff, “New empirical approach for the structure and energy of covalent systems”, Phys. Rev. B 37, 6991 (1988)
    【47】J. Tersoff, “Empirical interatomic potential for silicon with improved elastic properties”, Phys. Rev. B 38, 9902(1988)
    【48】J. Tersoff, “Modeling solid-state chemistry: Interatomic potentials for multicomponent systems”, Phys. Rev. B 39, 5566(1989)
    【49】K. Maekawa, and A.Itoh, “Friction and tool wear in nano-scale machining - A molecular dynamics approach”, Wear 188, 115(1995)
    【50】F. Cleri, and V. Rosato, “Tight-binding potentials for transition metals and alloys”, Rev. B 48, 22(1993)
    【51】R. W. Hertzberg, “Deformation and fracture mechanics of engineering materials”, John Wiley, New York(1989)
    【52】T. Zhu, J. Li, K. J. Van Vliet KJ, S. Ogta, S. Yip, and S. Suresh, “Predictive modeling of nanoindentation-induced homogeneous dislocation nucleation in copper”, J. Mech. Phys. Solids Vol. 52, 691(2004)
    【53】W. C. Oliver, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, J. Mater. Res. Vol. 7, 1564(1992)
    【54】J. M. Antunes, A. Cavaleiro, L. F. Menezes, M. I. Sioes, and J. V. Fernandes, “Ultra-microhardness testing procedure with Vickers indenter”, Surf. Coat. Tech. Vol. 149, 27(2002)
    【55】Y. Isono, and T. Tanaka, “Molecular dynamics simulation of atomic scale indentation and cutting process with atomic force microscope”, JSME Int. J. Seri. A: Mech. Mater. Eng., Vol. 42, 158(1999)
    【56】S. B. Sane, T. Cagin, W. G. Knauss, and W. A. Goddard, “Molecular dynamics simulations to compute the bulk response of amorphous PMMA”, J. Comput-Aided Mater. Vol. 8, 87(2002)
    【57】M. R. Nyden, and G. P. Forney, “New reactive molecular dynamics algorithm for modeling the thermal decomposition of polymers”, http://www.fire.tc.faa.gov/conference/pdf/MNydenAbs.PDF
    【58】李世炳, 鄒忠毅, “簡介導引模擬退火法及應用”, 物理雙月刊,
    第24卷第二期(2002)
    【59】M. Levitt, M. Hirshberg, R. Sharon, and V. Daggett, “Potential energy function and parameters for simulations of the molecular dynamics of proteins and nucleic acids in solution”, Comput. Phys. Commun. Vol. 91, 215(1995)
    【60】K. Mylvaganam, and L. C. Zhang, “Effect of oxygen penetration in silicon due to nano-indentation”, Nanotechnology Vol. 13,623(2002)
    【61】W. Chang, and T. Y. Lee, “Identification of separation mechanism in SiO2 membrane through hybrid molecular simulation”, (this paper has not been reviewed for technical content)
    【62】李育德,顏文義,莊祖煌,“聚合物物性”,高立圖書有限公司(1988)
    【62】C. C. Hwang, S. C. Lee, J. Y. Hsieh, and F. C. Huang, “A study of temperature effects on drop spreading by the molecular dynamics simulation”, Jpn. J. Appl. Phys. Vol. 68, 4301(1999)

    下載圖示 校內:2005-08-17公開
    校外:2005-08-17公開
    QR CODE