簡易檢索 / 詳目顯示

研究生: 許誼亭
Hsu, Yi-ting
論文名稱: 矽酸鹽化學鍵結應用於掺鐿光纖雷射系統之玻璃光學元件的耦合
Silicate Bonding Process Applied in Glass Optical Device Coupling of Ytterbium-doped Fiber Laser System
指導教授: 周維揚
Chou, Wei-yang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 71
中文關鍵詞: 光纖雷射雷射
外文關鍵詞: fiber lasers, lasers
相關次數: 點閱:59下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本論文分為兩部分,在第一部份,利用矽酸鹽化學鍵結解決高功率脈衝光纖雷射的端面因為光強度太大而產生熱損壞的問題。一般使用大孔徑光纖纖核降低光強度解決端面的熱損壞問題,此類方法會產生多模態(橫模)雷射光輸出降低光品質,或者在光纖出口熔接一段沒有纖核的光纖放大光束,此方式會降低了此段光纖的彎曲容忍度造成應用上的困難。有別於上述方法,我們於光纖端面利用矽酸鹽鍵結黏著光學玻璃作為保護元件,在介面折射率匹配的情況下將其出光光斑放大減少光強度來避免端面的熱損壞,維持單模輸出且有高機動性與低成本,利用此保護元件,我們成功使1 kW脈衝光纖雷射產生穩定輸出。
    第二部份,在光纖濾光元件的研發方面:由於光纖光柵容易受熱
    影響而降低濾光效率,且製作成本昂貴。我們提出一套新穎且簡單的元件製作方法,取代高製作成本的布拉格光纖光柵 (Fiber Bragg Grating),即藉由將有濾光功能的光學膜鍍於光纖端面並用矽酸鹽鍵結鍍膜光纖作為雷射共振腔的高反射偶合端,此鍍膜端反射雷射光源且讓幫浦光穿透,量出此元件對幫浦光的穿透效率為88 %,並用此元件架設出功率3.17 W 波長1.1 μm的CW雷射。

    In this paper, we divided the research of fiber lasers into two parts. First, in fiber lasers, we solved the damage problem present at the output facet in high-peak power laser systems. Unlike other approaches, such as the use of a large core fiber, which would produce multimode laser output, or the use of fusion-splicing coreless end caps to increase the spot size at the silica-air interface, which would limit the allowable bend radius of the fiber, in this paper, we bonded an optical flat at the fiber exit facet to decrease intensity and to maintain good beam quality with a matched refraction index of the bond. We also showed that the output power efficiency through the bond could reach up to 96 %. The bond could increase the reliability of a high-peak power fiber laser demonstrated beyond 1 kW with a 70 nanosecond pulse width and a repetition rate of 80 kHz.
    Secondly, we extended the application of the bonding process to replace costly Fiber Bragg Grating (FBG) with the optical filter by a silicate bonding process. We set up a simple fiber laser system with the optical filter and showed the transmission efficiency of the filter could reach up to 88 % and operated the bond in the CW fiber laser system to produce 3.17 W laser power at 1.1 μm. The low manufacturing cost and good temperature stability made the optical filter an excellent candidate for FBG.

    摘要………………………………………………………………………I Abstract…………………………………………………………………II 誌謝…………………………………………………………………….III List of figures……………………………………………………...….VII CHAPTER 1 Introduction of optical fiber lasers…………………….1 1.1 Fiber resonator……………………………………….........................2 1.2 Active dopants of high power fiber lasers……………………….......3 1.3 The advantages of fiber lasers………………………………………..3 CHAPTER 2 Background and Motivation of this thesis work………9 2.1 Silicate bond applied in High peak power fiber lasers……………….9 2.2 Novel optical filter device…………………………………………..10 CHAPTHER 3 Theory………………………………………………...16 3.1 Chemistry of hydroxide-catalysis bonding…………………………16 3.2 Fiber lasers………………………………………………………….17 3.2.1 Yb3+ doped fiber amplifier…………………………………..17 3.2.2 Basic fiber laser structure………………………………........18 3.2.3 Four-level rate equation…………..........................................19 3.2.4 Fiber Bragg Grating (FBG)………………………………….22 3.3 Optical coating for fiber grating…………………………………….24 CHAPTHER 4 Experiment of output facet protector devices by silicate bonding process…36 4.1Experimental procedure…………………………………………...36 4.2 Results and discussions…………………………………………….38 4.2.1 Refractive index of diluted solutions of sodium silicate…….37 4.2.2 Simulation of fiber lasers through silicate bond by ASAP….37 4.2.3 Transmittance efficiency for the bond ……………………...38 4.2.4 Output beam quality through the bond in peak power laser…38 4.2.5 Mechanical strength of silicate bonds……………………….39 CHAPTHER 5 Experiment of CW fiber laser based on optical filter device…51 5.1 Optical filter device by silicate bonding process…………………...53 5.2 Set up of CW fiber laser based on optical filter device……………..52 5.3 Results and discussions…………………………………………….53 CHAPTER 6 Conclusions and future work………………………..65 6.1 Conclusions………………………………………………………..65 6.2 Future work…………………………………………………………66 Reference……………………………………………………………….67

    [1] E. Snitzer, “Optical maser action of Nd3+ in a barium crown glass”, Phys. Rev. Lett. 7, 444 (1961).
    [2] D. Richardson, J. Minelly, and D. Hanna, “Fiber laser system shine brightly”, Laser Focus World 33, 87 (1997).
    [3] H. Po, E. Snitzer, R. Tumminelli, L. Zenteno, F. Hakimi, N. M. Cho, and T. Haw, “Double-clad high brightness Nd fiber laser pumped by GaAlAs phased array”, Proc. Opt. Fiber Commun., PD7 (1989).
    [4] E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, and B. C. McCollum, “Double-clad, offset core Nd fiber laser”, Proc. Opt. Fiber Commun., PD5 (1988).
    [5] M. E. Fermann and I. Hartl, “Ultrafast Fiber Laser Technology”, IEEE J. Sel. Top. Quantum Electron. 15, 191 (2009).
    [6] N. S. Kim, T. Hamada, M. Prabhu, C. Li, J. Song, K. Ueda, A. Liu, and H. J. Kong, “Numerical analysis and experimental results of output performance for Nd-doped double-clad fiber lasers”, Opt. Commun. 180, 329 (2002).
    [7] L. Philippe, V. Doya, R. Philippe, P. Dominique, M. Fabrice, and L. Olivier, “Experimental study of pump power absorption along rare-earth-doped double clad optical fibers”, Opt. Commun. 218, 249 (2003).
    [8] J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power”, Opt. Exp. 16, 13240 (2008).
    [9] R. Paschotta, “Encyclopedia of Laser Physics and Technology”, (2008).
    [10] Z. Jankiewicz and K. Kopczyñski, “Diode-pumped solid state lasers”. Opto-Electron. Rev. 9, 19 (2001).
    [11] A.Y. Nevsky, M. E., J. V. Zanthier, H. Walther, “A Nd : YAG Laser with short-term frequency stability at the Hertz-level”, Opt. Commun. 210, 91 (2002).
    [12] M. L., S. G., J. K. Sahu, W. A. Clarkson, and J. N., “Accurate efficiency evaluation of energy-transfer processes in phosphor silicate Er3+-Yb3+-codoped fibers”, J. Opt. Soc. Am. B 23, 195 (2006).
    [13] D. Jun, B. Michael, M. Yanli, D. Peizhen, G. Fuxi, “Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet”, J. Opt. Soc. Am. B 20, 1975 (2003).
    [14] N. Vorobiev, L. Glebov, and V. Smirnov, “Single-frequency-mode Q-switched Nd:YAG and Er:glass lasers controlled by volume Bragg gratings”, Opt. Exp. 16, 9199 (2008)
    [15] A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” Opt. Phys. 38, 681 (2005).
    [16] Y. Jeong, J. Sahu, K. Baek, S. Alegria, C. Soh, D.B.S., C. Codemard, J. Nilsson, ‘Cladding-pumped ytterbium-doped large-core fiber laser with 610 W of output power’, Opt. Commun. 234, 315 (2004).
    [17] Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson., “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power”, Opt. Exp. 12, 6088 (2004).
    [18] C. Brooks and F. Di Teodoro, “Multimegawatt peak-power, single-transverse-mode operation of a 100 mm core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” Appl. Phys. Lett. 89, 111 (2006).
    [19] S. Sinha, K. Urbanek, A. Krzywicki, and R. Byer1, “Investigation of the suitability of silicate bonding for facet termination in active fiber devices,” Opt. Exp .15. 13003 (2007).
    [20] M. Wickham, “Coherently Coupled High Power Fiber Arrays”, Proceedings of the SPIE, 56102, 61020U-1(2006).
    [21] S. R. Baker, H. N. Rourke, V. Baker, D. Goodchil, S. Davis, T. J. Cullen, R. S. Baulcomb, K. C. Byron, A. Fielding, and S. J. Clements, “Thermal Decay of Fiber Bragg Gratings”, Conference Publication No. 448, IEEE (1997).
    [22] http://en.wikipedia.org/wiki/Fiber_Bragg_grating
    [23] D. Gwo, “Ultra precision and reliable bonding method”, US Patent 6,284,085 (2001)
    [24] E. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, G. Cagnoli, “Hydroxide-catalysis bonding for stable optical systems for space,” Class. Quantum Grav. 22, 257 (2005).
    [25] R. Paschotta, J. Nilsson, A. C. Tropper, D. C. Hanna, “Ytterbium-Doped Fiber Amplifiers”, IEEE J. Quantum Electronics, 33, 1049 (1997)
    [26] A. S. Kurkov, V. M. Paramonov, O. I. Medvedkov, “Ytterbium fiber emitting at 1160 nm”, Laser Phys. Lett. 3, 503 (2006).
    [27] I. P. Alcock, A. I. Ferguson, D. C. Hanna, and A. C. Tropper, “Continuous-wave oscillation of a monomode neodymium-doped fibre laser at 0.9 m on the 4F3/2 to 4I9/2 transition”, Opt. Commun. 58, 405 (1987).
    [28] J. Hamel, A. Cassini, H. Abu-Safia, and M. Leduc, “Diode pumping of LNA lasers for helium optical pumping”, Opt. Commun. 63, 114 (1987).
    [29] J. Limpert, T. Schreiber, T. Clausnitzer, K. Zöllner, H. Fuchs, E. Kley, H. Zellmer, and A. Tünnermann, “High-power femtosecond Yb-doped fiber amplifier”, Opt. Exp. 10, 628 (2002)
    [30] Y. H. Tsang, T. A. King, T. Thomas, C. Udell, M. C. Pierce , “Efficient high power Yb3+-silica fibre laser cladding-pumped at 1064 nm”, Opt. Commun. 215 (2002)
    [31] Harry J. R. Dutton, “Understanding optical communication”, IBM Redbooks, 3 (1999).
    [32] M. Csele, “Fundamentals of light sources and lasers”, Wiley-Interscience, 140 (2004).
    [33] W. H. Loh, B. N. Samson, L. Dong, G. J. Cowle, and K. Hsu, “High performance single frequency fiber grating-based erbium, ytterbium -codoped fiber lasers”, J. Lightwave Technol. 16, 114 (1998)
    [34] X. Xu, Y. Dai, X. Chen, D. Jiang and S. Xie, “Chirped and phase-sampled fiber Bragg grating for tunable DBR fiber laser”, Opt. Exp. 13 , 3877 (2005)
    [35] Alfred J., “Design of optical interference coatings”, Mcgraw-Hill, 5 (1992).
    [36] S. Sinha, K. E. Urbanek, A. Krzywicki, R. L. Byer, “Investigation of the suitability of silicate bonding for facet termination in active fiber devices”, Opt. Exp. 15, 13003 (2007).
    [37] M. A. Matveev and A. I. Rabukhin, “Relationship between the refractive index of water glasses and their composition”, Glass and Ceramics, 20, 5 (1963).
    [38] P. Debye and R. Nauman, “The refractive indexes of sodium silicate
    solutions”, J. Phys. chem, 65, 8 (1961)..
    [39] H. A. Macleod, “Thin-Film Optical Filter”, 3rd, Institute of Physics Publishing Bristol and Philadephia, 5 (1986).
    [40] J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection”, Nat. Photonics, 1, 176 (2007)
    [41] Knight, J. C. Arriaga, J. Birks, T. A. Ortigosa-Blanch, A. Wadsworth, W. J. Russell, “Anomalous dispersion in photonic crystal fiber”, IEEE Photon. Technol. Lett. 12, 807 (2000).

    下載圖示 校內:2010-08-14公開
    校外:2010-08-14公開
    QR CODE