簡易檢索 / 詳目顯示

研究生: 羅紹瑋
Luo, Shau-Wei
論文名稱: 3D列印不鏽鋼粉末摻合聚乳酸之複合線材之製程研究
3D Printing Process Using Composite Filament Made with Stainless Steel Powder and Polylactic Acid
指導教授: 鄭金祥
Cheng, Chin-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程國際碩博士學位學程
International Master/Doctoral Degree Program on Energy Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 104
中文關鍵詞: 3D列印複合材料不鏽鋼粉末燒結聚乳酸
外文關鍵詞: 3D printing, composite materials, sintering, fused deposition fabrication
相關次數: 點閱:64下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用熔融沉積成形法之3D列印機,搭配使用316L不鏽鋼粉末摻合聚乳酸之複合線材Stainless Steel 316L Filamet™(線材密度為4.81 g/cm^3,金屬粉末含量80-85 wt %)印製零件,再將印製好的零件放入高溫燒結爐中經過燒結後即可獲得純金屬零件。相較於使用純金屬粉末進行雷射或是電子束燒結等成形法,此種方法是一種低成本的製造方式。在燒結的製程中,本研究探討了三種不同燒結溫度以及時間搭配出的燒結曲線;以及三種不同的耐火材料對成品的影響。燒結完成後的成品,將探討試片之收縮率,以及進行一系列機械性質的量測,並使用掃描式電子顯微鏡進行表面觀測,比較試片在燒結前後的成分及表面差異。其燒結後試片之所有實驗量測結果將與一般316L不鏽鋼做比較。研究結果中發現,燒結後的試片體積將會縮小一定的比例,若製造在尺寸上有一定要求的零件可依照此研究實驗出的收縮比例,在列印時先將零件放大,再研磨至需要的尺寸即可。另外,本研究中的燒結製程會使燒結後零件含碳量增加,進而些許的提升了洛式硬度值及耐磨耗性能,但在拉伸強度及衝擊能量中的結果都低於一般316L不鏽鋼,也降低了耐腐蝕的性能。

    In this study, by using composite filaments containing 316L stainless steel powder and polylactic acid (PLA), solid metals and parts can be fabricated through a sintering process with low-cost fused deposition modeling (FDM). The sintering recipe of three different sintering temperatures and times and the effect of three different refractories on the parts are discussed. After the sintering of the finished product, a series of mechanical properties were measured and the surface of the test piece before and after sintering was compared by electron microscope. Test items include Rockwell hardness, wearing test, tensile test, corrosion test, shrinkage rate, impact test and thermal conductivity measurement. All experimental measurement results of the sintered test sample will be compared with general 316L stainless steel.

    摘要 I ABSTRACT II 致謝 IX 目錄 X 表目錄 XIII 圖目錄 XIV 符號索引 XVII 第一章 前言 1 1.1 研究背景與動機 1 1.2 熔融積成型法(Fused deposition modeling, FDM) 3 1.3 聚乳酸摻合金屬粉末 4 1.4 文獻回顧 5 1.5 研究方向及目的 9 第二章 實驗設備及材料 10 2.1 試片製備 10 2.1.1 列印材料 10 2.1.2 3D列印機 11 2.1.3 耐火材料及坩堝 12 2.1.4 高溫燒結爐 12 2.2 量測設備 13 2.2.1 洛氏硬度試驗機 13 2.2.2 衝擊試驗機 15 2.2.3 萬能材料試驗機及伸長計 16 2.2.4 往復式磨耗試驗機 19 2.2.5 高解析熱場發射掃描式電子顯微鏡 20 2.2.6 閃光法熱傳導分析儀 21 2.2.7 電化學分析儀 22 第三章 實驗量測過程 25 3.1 洛氏硬度試驗機-硬度量測 25 3.2 衝擊試驗機-衝擊實驗 26 3.3 萬能材料拉伸試驗機-拉伸試驗 27 3.4 往復式磨耗試驗機-耐磨耗測試 28 3.5 高解析熱場發射掃描式電子顯微鏡-試片表面觀測 29 3.5.1 二次電子圖像(Secondary electron images, SEI) 29 3.5.2 能量散射X射線譜(Energy dispersive X-ray spectroscopy, EDS)30 3.6 閃光法熱傳導分析儀-熱傳導係數及熱擴散係數量測 31 3.7 電化學分析儀-耐腐蝕實驗 32 第四章 結果與討論 34 4.1 燒結溫度及時間的影響 34 4.2 耐火材料的影響 35 4.3 試片收縮率 35 4.4 SEM及EDS結果 36 4.5 硬度量測 38 4.6 耐磨耗測試 38 4.7 耐腐蝕實驗 39 4.8 衝擊實驗 40 4.9 熱傳導係數及熱擴散係數量測 41 4.10 拉伸試驗 41 第五章 結論 43 參考文獻 46

    [1]P. Gustafson, 3D Printing and the Future of Manufacturing, Corporation Service Company, Wilmington, 2013.
    [2]M. Monzón, Z. Ortega, and A. Martínez, "Standardization in additive manufacturing: activities carried out by international organizations and projects," The international journal of advanced manufacturing technology, Vol. 76, No. 5, pp. 1111-1121, 2015.
    [3]S. Das, D. Bourell, and S. Babu, " Metallic materials for 3D printing," Mrs.Bulletin, Vol. 41, No. 10, pp. 729-741, 2016.
    [4]T. Duda, and L. V. Raghavan, " 3D metal printing technology," International Federation of Automatic Controls-PapersOnLine, Vol. 49, No. 29, pp. 103-110, 2016.
    [5]J. Edgar and S. Tint, "Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing," Johnson Matthey Technology Review, Vol.59, No. 3, pp. 193-198, 2015.
    [6]BASF公司主頁: https://www.ultrafusefff.com/
    (still available on Jun., 2022)
    [7]The Virtual Foumdry公司主頁: https://thevirtualfoundry.com/
    (still available on Jun., 2022)
    [8]E. T. Vink, K. R. Rabago, D. A. Glassner, and P. R. Gruber, "Applications of life cycle assessment to NatureWorks™ polylactide (PLA) production," Polymer Degradation and Stability, Vol. 80, No. 3, pp. 403-419, 2003.
    [9]S. Farah, D. G. Anderson, and R. Langer, "Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review," Advanced Drug Delivery Reviews, Vol. 107, pp. 367-392, 2016.
    [10]J. S. Soares, J. E. Moore Jr, and K. R. Rajagopal, "Constitutive framework for biodegradable polymers with applications to biodegradable stents," Asaio Journal, Vol. 54, No. 3, pp. 295-301, 2008.
    [11]S. C. Schmidt and M. A. Hillmyer, "Polylactide stereocomplex crystallites as nucleating agents for isotactic polylactide," Journal of Polymer Science Part B: Polymer Physics, Vol. 39, No. 3, pp. 300-313, 2001.
    [12]M. Agarwala, R. V. Weeren, A. Bandyopadhyay, A. Safari, S. Danforth, and W. Priedeman, "Filament feed materials for fused deposition processing of ceramics and metals," International Solid Freeform Fabrication Symposium, Austin, 1996.
    [13]G. Wu, N. A. Langrana, R. Sadanji, and S. Danforth, "Solid freeform fabrication of metal components using fused deposition of metals," Materials & Design, Vol. 23, No. 1, pp. 97-105, 2002.
    [14]S. Cano, "Additive manufacturing of zirconia parts by fused filament fabrication and solvent debinding: Selection of binder formulation," Additive Manufacturing, Vol. 26, pp. 117-128, 2019.
    [15]張意婕, 利用 3D 列印金屬粉末摻合聚乳酸之複合材料製造金屬零件, 國立成功大學航空太空工程研究所碩士論文, 台灣, 2021。
    [16]J. Laureto, J. Tomasi, J. A. King, and J. M. Pearce, "Thermal properties of 3-D printed polylactic acid-metal composites," Progress in Additive Manufacturing, Vol. 2, No. 1, pp. 57-71, 2017.
    [17]M. Mousapour, M. Salmi, L. Klemettinen, and J. Partanen, "Feasibility study of producing multi-metal parts by Fused Filament Fabrication (FFF) technique," Journal of Manufacturing Processes, Vol. 67, pp. 438-446, 2021.
    [18]I. Ait-Mansour, N. Kretzschmar, S. Chekurov, M. Salmi, and J. Rech, "Design-dependent shrinkage compensation modeling and mechanical property targeting of metal FFF," Progress in Additive Manufacturing, Vol. 5, No. 1, pp. 51-57, 2020.
    [19]Y. Thompson, J. Gonzalez-Gutierrez, C. Kukla, and P. Felfer, "Fused filament fabrication, debinding and sintering as a low cost additive manufacturing method of 316L stainless steel," Additive Manufacturing, Vol. 30, p. 100861, 2019.
    [20]N. Kurgan and R. Varol, "Mechanical properties of P/M 316L stainless steel materials," Powder Technology, Vol. 201, No. 3, pp. 242-247, 2010.
    [21]K. Gante Lokesha Renukaradhya, Metal Filament 3D Printing of SS316L: Focusing on the printing process, Master Theis , School of Industrial Engineering and Management, Royal Institute of Technology, Stockholm, Sweden, 2019.
    [22]KYONGBOK公司主頁: https://www.gagemaster.co.kr/
    (still available on Jun., 2022)
    [23]ASTM Standard E18-20, Standard Test Methods for Tension Testing of Metallic Materials, ASTM.
    [24]ASTM Standard E23-18, Standard Test Methods for Tension Testing of Metallic Materials, ASTM.
    [25]ASTM Standard E8/E8M-21, Standard Test Methods for Tension Testing of Metallic Materials, ASTM.
    [26]詹添印、廖德潭、周漢標, 機械材料試驗, 全華科技圖書股份有限公司, 台灣, 2003.
    [27]Homepage of NETZSCH:
    https://analyzing-testing.netzsch.com/en/products/thermal-diffusivity-and-conductivity/lfa-467-ht-hyper-flash
    (still available on Jun., 2022)
    [28]ASTM Standard E1461-13, Standard Test Methods for Tension Testing of Metallic Materials, ASTM.
    [29]A. J. Bard, and L. R. Faulkner, Student Solutions Manual to accompany Electrochemical Methods: Fundamentals and Applications, 2nd Ed., Wiley, New York, 2002.
    [30]M. Kutz, Handbook of Environmental Degradation of Materials, 2nd Ed., Elsevier, Amsterdam, 2013.
    [31]H. Gong, C. Crater, A. Ordonez, C. Ward, M. Waller, and C. Ginn, "Material properties and shrinkage of 3D printing parts using ultrafuse stainless steel 316LX filament," MATEC Web of Conferences, Vol. 249, p. 01001, 2018.
    [32]ASTM Standard A240/A240M-20a, Standard Test Methods for Tension Testing of Metallic Materials, ASTM.
    [33]黃振賢,機械材料, 新文京開發出版股份有限公司,台灣, 2007。
    [34]M. Tsujikawa, S. Noguchi, N. Yamauchi, N. Ueda, and T. Sone, "Effect of molybdenum on hardness of low-temperature plasma carburized austenitic stainless steel," Surface and Coatings Technology, Vol. 201, No. 9-11, pp. 5102-5107, 2007.
    [35]I. Alvarez-Armas, "Duplex stainless steels: brief history and some recent alloys," Recent Patents on Mechanical Engineering, Vol. 1, No. 1, pp. 51-57, 2008.
    [36]Z. Panossian, N. L. de Almeida, R. M. F. de Sousa, G. de Souza Pimenta, and L. B. S. Marques, "Corrosion of carbon steel pipes and tanks by concentrated sulfuric acid: a review," Corrosion Science, Vol. 58, pp. 1-11, 2012.
    [37]R. K. Buddu, N. Chauhan, and P. Raole, "Mechanical properties and microstructural investigations of TIG welded 40 mm and 60 mm thick SS 316L samples for fusion reactor vacuum vessel applications," Fusion Engineering and Design, Vol. 89, No. 12, pp. 3149-3158, 2014.
    [38]C. S. Kim, Thermophysical properties of stainless steels, Argonne National Lab, Illinois, 1975.
    [39]P. Jiang, C. Wang, Q. Zhou, X. Shao, L. Shu, and X. Li, "Optimization of laser welding process parameters of stainless steel 316L using FEM, Kriging and NSGA-II," Advances in Engineering Software, Vol. 99, pp. 147-160, 2016.
    [40]A. M. Ramirez, J. Y. Limon, F. J. Espinoza, and Y. Vorobiev, "Effects of porosity on the thermal properties of a 380-aluminum alloy," Journal of Materials Research, Vol. 14, No. 10, pp. 3901-3906, 1999.

    下載圖示 校內:2025-07-22公開
    校外:2025-07-22公開
    QR CODE