| 研究生: |
范綱倫 Fan, Gang-Lun |
|---|---|
| 論文名稱: |
利用混合外梯度形式解平衡系統問題、非擴張映射及單調映射 A Hybrid-extragradient Scheme For System of Equilibrium Problems, Nonexpansive Mappings and Monotone Mappings |
| 指導教授: |
吳順益
Wu, Soon-Yi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 22 |
| 中文關鍵詞: | 混合外梯度方法 、非擴張映射 、k-Lipschitz連續映射 、單調映射 、變分不等式問題 、平衡系統問題 、固定點 |
| 外文關鍵詞: | Hybrid extragradient method, k-Lipschitz continuous mapping, Monotone mapping, Variational inequality problem, System of equilibrium problems, Fixed points |
| 相關次數: | 點閱:97 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本文裡,我們將根據混合方法及外梯度法來引進一種新的疊代組合,並藉由此方法去尋找在希爾柏空間裡平衡系統問題的解集合、非擴張映射的固定點集合,以及單調和 k-Lipshitz 連續映射的變分不等式問題之解集合所產生的共同元素。而由此方法所疊代出的序列也產生了一些收斂性的結果。
然而,在本文裡這些結果是延伸並改進一些在文獻上已知的結果。
In this paper, we introduce a new iterative scheme based on both hybrid method and extragradient Method to find a common element of the solutions set of a system of equilibrium problems, the fixed points set of a nonexpansive mapping, and the solutions set of a variational inequality problems for a monotone and k-Lipschitz continuous mapping in a Hilbert space. Some convergence results for the iterative sequences generated by these processes are obtained. The results in this paper extend and improve some known results in the literature.
[1] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student, 63, 123-145, 1994.
[2] V. Colao, G. L. Acedob, G. Marinoa, An implicit method for finding common solutions of variational inequalities and systems of equilibrium problems and fixed points of infinite family of nonexpansive mappings, Nonlinear Analysis 71, 2708-2715, 2009.
[3] P. L. Combettes, S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. 6, 117-136, 2005.
[4] A. Genel and J. Lindenstrass, An example concerning fixed points, Isael. J. Math., 22, 81V86, 1975.
[5] K. Goebel and W. A. Kirk, Topics in metric fixed point theory, Cambridge University Press, Cambridge, 1990.
[6] K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, New York, 1984.
[7] G.M. Korpelevich, The extragradient method for finding saddle points and other problems, Matecon, 12, 747-756, 1976.
[8] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4, 506-510, 1953.
[9] Z. Opial,Weak convergence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73, 591-597, 1967.
[10] J. W. Peng, J. C. Yao, A viscosity approximation scheme for system of equilibrium problems, nonexpansive mappings and monotone mappings, Nonlinear Analysis 71,
6001-6010, 2009.
[11] S. Reich, Weak convergence theorems for nonexpansive mappings, J. Math. Anal. Appl., 67, 274-276, 1979.
[12] R. T. Rockafellar, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc., 149, 75-88, 1970.
[13] A. E. Taylor, Introduction to functional analysis, Wiley, New York, 1958.
[14] S. Takahashi and W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl., 331, 506-515, 2007.
[15] W. Takahashi, Y. Takeuchi, R. Kubota, Strong Convergence Theorems by Hybrid Methods for Families of Nonexpansive Mappings in Hilbert Spaces, J. Math. Anal. Appl., 341, 276-286, 2008.
[16] W. Takahashi, K. Zembayashi, Strong convergence theorem by a new hybrid method for equilibrium problems and relatively nonexpansive mappings, Fixed point Theory Appl., doi:10.1155/2008/528476, 2008.