簡易檢索 / 詳目顯示

研究生: 傅兆麟
Fu, Jhao-Lin
論文名稱: 缺氧調控血管生成素之機制及其在子宮內膜異位症功能之探討
Characterization of Hypoxia-Regulated Angiogenin Expression and Its Impact in Endometriosis
指導教授: 蔡少正
Tsai, Shaw-Jenq
學位類別: 碩士
Master
系所名稱: 醫學院 - 生理學研究所
Department of Physiology
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 67
中文關鍵詞: 缺氧雞卵蛋白上游啟動子轉錄因子-II血管生成素血管新生子宮內膜異位症
外文關鍵詞: Hypoxia, COUP-TFII, Angiogenin, angiogenesis, endometriosis
相關次數: 點閱:144下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 子宮內膜異位症乃指子宮內膜組織生長於子宮腔外的環境,是生殖年齡婦女中很常見的婦科疾病之一。先前的研究結果已知子宮內膜異位組織在腹腔中面臨的缺氧因素在其血管新生的病程發展中扮演著重要的角色。然而缺氧在子宮內膜異位症中的致病機制,仍然有許多未知的部分尚待釐清。我們發現在子宮內膜異位症中,新穎的血管新生因子血管生成素,能夠被缺氧誘導增加其表達。然而利用生物資訊分析,血管生成素的啟動子並沒有缺氧反應元件。我們進一步針對血管生成素啟動子的潛在轉錄因子結合位點分析,顯示其可能受到雞卵蛋白上游啟動子轉錄因子-II調控。先前的研究指出雞卵蛋白游啟動子轉錄因子-II參與調控許多子宮內膜異位症的病理機轉,而其表現量減少的現象被認為是促進子宮內膜異位症病程發展的重要因素之一。因此,我們假設在子宮內膜異位症中,缺氧誘導血管生成素的表現量增加是透過抑制雞卵蛋白上游啟動子轉錄因子-II表達。我們以微小干擾核糖核酸抑制雞卵蛋白上游啟動子轉錄因子-II的表現,能夠誘導血管生成素的表現量增加,同時過度表現雞卵蛋白上游啟動子轉錄因子-II降低血管生成素的表現。缺氧或者使用模擬缺氧化合物的處理下能夠抑制雞卵蛋白上游啟動子轉錄因子-II的表達,同時增加血管生成素的表現量。在缺氧處理下,藉由過度表現的方式恢復雞卵蛋白上游啟動子轉錄因子-II的表現水平,能夠減少由缺氧誘導增加的血管生成素表現量,顯示雞卵蛋白上游啟動子轉錄因子-II的減少對於缺氧誘導血管生成素相當重要。我們進一步釐清血管生成素增加的現象是由於雞卵蛋白上游啟動子轉錄因子-II減少結合在血管新生素啟動子,進而促進血管生成素啟動子的活性。抑制雞卵蛋白上游啟動子轉錄因子-II誘導增加的血管生成素能夠分泌到細胞外,並促進形成血管網絡的能力;然而在抑制血管生成素的表現後能夠阻斷增加的血管網絡形成現象。在過度表現的雞卵蛋白上游啟動子轉錄因子-II的情況下,能夠導致缺氧誘導的血管生成素表現量的減少,進而導致由缺氧促進人類臍靜脈內皮細胞形成血管網絡能力的減低,顯示血管生成素在由缺氧介導的血管新生進程中扮演相當重要的促進角色。綜合以上,我們的研究結果指出一個新穎的血管新生因子—血管生成素—受到缺氧抑制雞卵蛋白上游啟動子轉錄因子-II的機制調控,導致血管新生的現象,進而促進子宮內膜異位組織的發展。

    Endometriosis, characterized as the presence of endometrial tissues outside the uterus, is one of the most common gynecological diseases in women of reproductive age. Hypoxia plays important roles in promoting angiogenesis during the development of endometriosis. However, the underlying mechanism remains largely unknown. Herein, we identified angiogenin (ANG), a novel angiogenic factor, is increased under hypoxia in endometriosis. Since there is no hypoxia responsive element in the ANG promoter region, we analyzed the potential transcription factor binding site in the promoter region of ANG and identified potential binding sites for chicken ovalbumin upstream promoter transcription factor II (COUP-TFII). Downregulation of COUP-TFII is important for pathogenesis of endometriosis. Thus, we hypothesized that hypoxia regulates ANG expression via suppression of COUP-TFII in endometriosis. Knockdown of COUP-TFII in eutopic endometrial stromal cells increased ANG expression. Treatment of eutopic endometrial stromal cells with hypoxia decreased COUP-TFII expression and concomitantly induced ANG expression. In contrast, overexpression of COUP-TFII under hypoxia significantly reduced hypoxia-induced ANG expression. Chromatin immunoprecipitation-qPCR analysis revealed that binding of COUP-TFII to ANG promoter region was significantly reduced under hypoxia. Treatment with hypoxia or knockdown of COUP-TFII increased ANG promoter activity. Treatment of human umbilical vein endothelial cells with conditioned media collected from stromal cells with COUP-TFII knockdown significantly promoted tube formation. In contrast, the COUP-TFII knockdown-induced angiogenic capacity was abolished by simultaneously knocking down of ANG. Taken together, our results demonstrated that ANG involves in the angiogenesis of endometriosis through hypoxia-mediated loss-of-COUP-TFII expression and suggest ANG may be a novel therapeutic target for treatment of endometriosis.

    Abstract I Abstract in Chinese III Introduction 1 The etiology of endometriosis 1 Hypoxia 3 Hypoxia in endometriosis 4 Angiogenesis in endometriosis 6 Angiogenin 7 Angiogenin in endometriosis 9 COUP-TFII in endometriosis 10 Materials and Methods 11 Results 21 Expression level of ANG is upregulated in endometriotic tissues and ectopic endometriotic stromal cells 21 Upregulation of ANG is induced by hypoxia in endometrial stromal cells 21 COUP-TFII negatively regulates ANG expression in endometrial and endometriotic stromal cells 25 Hypoxia suppresses COUP-TFII expression in endometrial stromal cells 32 Hypoxia induces ANG expression through downregulation of COUP-TFII 37 Loss-of-COUP-TFII-induced ANG promotes angiogenesis in vitro 37 Discussion 45 Reference 48 Appendix 55

    1. Giudice LC & Kao LC (2004) Endometriosis. Lancet 364(9447):1789-1799.
    2. Acién P & Velasco I (2013) Endometriosis: A Disease That Remains Enigmatic. ISRN obstetrics and gynecology 2013.
    3. Cramer DW & Missmer SA (2002) The epidemiology of endometriosis. Annals of the New York Academy of Sciences 955:11-22; discussion 34-16, 396-406.
    4. Mahmood TA, Templeton AA, Thomson L, & Fraser C (1991) Menstrual symptoms in women with pelvic endometriosis. British journal of obstetrics and gynaecology 98(6):558-563.
    5. Cheong Y, et al. (2008) Laparoscopic surgery for endometriosis: How often do we need to re-operate? J Obstet Gynaecol 28(1):82-85.
    6. Sampson JA (1927) Peritoneal endometriosis due to the menstrual dissemination of endometrial tissue into the peritoneal cavity. American Journal of Obstetrics & Gynecology 14:422-425.
    7. Halme J, Hammond MG, Hulka JF, Raj SG, & Talbert LM (1984) Retrograde menstruation in healthy women and in patients with endometriosis. Obstetrics and gynecology 64(2):151-154.
    8. Kitawaki J, et al. (2002) Endometriosis: the pathophysiology as an estrogen-dependent disease. The Journal of steroid biochemistry and molecular biology 83(1-5):149-155.
    9. Hsu CC, Lu CW, Huang BM, Wu MH, & Tsai SJ (2008) Cyclic adenosine 3',5'-monophosphate response element-binding protein and CCAAT/enhancer-binding protein mediate prostaglandin E2-induced steroidogenic acute regulatory protein expression in endometriotic stromal cells. The American journal of pathology 173(2):433-441.
    10. Yang S, et al. (2002) Regulation of aromatase P450 expression in endometriotic and endometrial stromal cells by CCAAT/enhancer binding proteins (C/EBPs): decreased C/EBPbeta in endometriosis is associated with overexpression of aromatase. The Journal of clinical endocrinology and metabolism 87(5):2336-2345.
    11. Halme J, Becker S, Hammond MG, Raj MH, & Raj S (1983) Increased activation of pelvic macrophages in infertile women with mild endometriosis. American journal of obstetrics and gynecology 145(3):333-337.
    12. Gazvani R & Templeton A (2002) Peritoneal environment, cytokines and angiogenesis in the pathophysiology of endometriosis. Reproduction 123(2):217-226.
    13. Wu MH, et al. (2002) Distinct mechanisms regulate cyclooxygenase-1 and -2 in peritoneal macrophages of women with and without endometriosis. Molecular human reproduction 8(12):1103-1110.
    14. Wu MH, et al. (2005) Distinct regulation of cyclooxygenase-2 by interleukin-1beta in normal and endometriotic stromal cells. The Journal of clinical endocrinology and metabolism 90(1):286-295.
    15. Wu MH, Lu CW, Chuang PC, & Tsai SJ (2010) Prostaglandin E2: the master of endometriosis? Experimental biology and medicine (Maywood, N.J 235(6):668-677.
    16. Wu MH, et al. (2005) Suppression of matrix metalloproteinase-9 by prostaglandin E(2) in peritoneal macrophage is associated with severity of endometriosis. The American journal of pathology 167(4):1061-1069.
    17. Chuang PC, Wu MH, Shoji Y, & Tsai SJ (2009) Downregulation of CD36 results in reduced phagocytic ability of peritoneal macrophages of women with endometriosis. The Journal of pathology 219(2):232-241.
    18. Wang GL, Jiang BH, Rue EA, & Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proceedings of the National Academy of Sciences of the United States of America 92(12):5510-5514.
    19. Semenza GL (2004) Hydroxylation of HIF-1: oxygen sensing at the molecular level. Physiology (Bethesda, Md.) 19:176-182.
    20. Wenger RH, Stiehl DP, & Camenisch G (2005) Integration of oxygen signaling at the consensus HRE. Science's STKE : signal transduction knowledge environment 2005(306):re12.
    21. Maxwell PH, et al. (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399(6733):271-275.
    22. Lando D, Peet DJ, Whelan DA, Gorman JJ, & Whitelaw ML (2002) Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science (New York, N.Y.) 295(5556):858-861.
    23. Arany Z, et al. (1996) An essential role for p300/CBP in the cellular response to hypoxia. Proceedings of the National Academy of Sciences of the United States of America 93(23):12969-12973.
    24. Semenza GL (2014) Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annual review of pathology 9:47-71.
    25. Bertout JA, Patel SA, & Simon MC (2008) The impact of O2 availability on human cancer. Nature reviews. Cancer 8(12):967-975.
    26. Wu MH, Chen KF, Lin SC, Lgu CW, & Tsai SJ (2007) Aberrant expression of leptin in human endometriotic stromal cells is induced by elevated levels of hypoxia inducible factor-1alpha. The American journal of pathology 170(2):590-598.
    27. Styer AK, et al. (2008) Ablation of leptin signaling disrupts the establishment, development, and maintenance of endometriosis-like lesions in a murine model. Endocrinology 149(2):506-514.
    28. Becker CM, et al. (2008) 2-methoxyestradiol inhibits hypoxia-inducible factor-1{alpha} and suppresses growth of lesions in a mouse model of endometriosis. The American journal of pathology 172(2):534-544.
    29. Critchley HO, et al. (2006) Hypoxia-inducible factor-1alpha expression in human endometrium and its regulation by prostaglandin E-series prostanoid receptor 2 (EP2). Endocrinology 147(2):744-753.
    30. Owens DM & Keyse SM (2007) Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases. Oncogene 26(22):3203-3213.
    31. Wu MH, Lin SC, Hsiao KY, & Tsai SJ (2011) Hypoxia-inhibited dual-specificity phosphatase-2 expression in endometriotic cells regulates cyclooxygenase-2 expression. The Journal of pathology 225(3):390-400.
    32. Lin SC, et al. (2012) Hypoxia-induced microRNA-20a expression increases ERK phosphorylation and angiogenic gene expression in endometriotic stromal cells. The Journal of clinical endocrinology and metabolism 97(8):E1515-1523.
    33. Bulun SE, et al. (2004) Aromatase and endometriosis. Semin Reprod Med 22(1):45-50.
    34. Wu MH, Lu CW, Chang FM, & Tsai SJ (2012) Estrogen receptor expression affected by hypoxia inducible factor-1alpha in stromal cells from patients with endometriosis. Taiwanese journal of obstetrics & gynecology 51(1):50-54.
    35. Bulun SE, et al. (2010) Estrogen receptor-beta, estrogen receptor-alpha, and progesterone resistance in endometriosis. Seminars in reproductive medicine 28(1):36-43.
    36. Bulun SE, et al. (2012) Role of estrogen receptor-beta in endometriosis. Seminars in reproductive medicine 30(1):39-45.
    37. Liao D & Johnson RS (2007) Hypoxia: a key regulator of angiogenesis in cancer. Cancer metastasis reviews 26(2):281-290.
    38. Shifren JL, et al. (1996) Ovarian steroid regulation of vascular endothelial growth factor in the human endometrium: implications for angiogenesis during the menstrual cycle and in the pathogenesis of endometriosis. The Journal of clinical endocrinology and metabolism 81(8):3112-3118.
    39. Nieminen U (1962) Studies on the Vascular Pattern of Ectopic Endometrium with Special Reference to Cyclic Changes. Acta Obstetricia et Gynecologica Scandinavica 41(S3):1-81.
    40. Ozawa Y, et al. (2006) A selective cyclooxygenase-2 inhibitor suppresses the growth of endometriosis xenografts via antiangiogenic activity in severe combined immunodeficiency mice. Fertility and sterility 86(4 Suppl):1146-1151.
    41. Laschke MW, Elitzsch A, Vollmar B, Vajkoczy P, & Menger MD (2006) Combined inhibition of vascular endothelial growth factor (VEGF), fibroblast growth factor and platelet-derived growth factor, but not inhibition of VEGF alone, effectively suppresses angiogenesis and vessel maturation in endometriotic lesions. Human reproduction (Oxford, England) 21(1):262-268.
    42. Sharkey AM, et al. (2000) Vascular endothelial growth factor expression in human endometrium is regulated by hypoxia. The Journal of clinical endocrinology and metabolism 85(1):402-409.
    43. Hsiao KY, Chang N, Lin SC, Li YH, & Wu MH (2014) Inhibition of dual specificity phosphatase-2 by hypoxia promotes interleukin-8-mediated angiogenesis in endometriosis. Human reproduction (Oxford, England) 29(12):2747-2755.
    44. Fett JW, et al. (1985) Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells. Biochemistry 24(20):5480-5486.
    45. Leland PA, Staniszewski KE, Park C, Kelemen BR, & Raines RT (2002) The ribonucleolytic activity of angiogenin. Biochemistry 41(4):1343-1350.
    46. Shapiro R & Vallee BL (1989) Site-directed mutagenesis of histidine-13 and histidine-114 of human angiogenin. Alanine derivatives inhibit angiogenin-induced angiogenesis. Biochemistry 28(18):7401-7408.
    47. Shapiro R & Vallee BL (1987) Human placental ribonuclease inhibitor abolishes both angiogenic and ribonucleolytic activities of angiogenin. Proceedings of the National Academy of Sciences of the United States of America 84(8):2238-2241.
    48. Hu GF, Riordan JF, & Vallee BL (1997) A putative angiogenin receptor in angiogenin-responsive human endothelial cells. Proceedings of the National Academy of Sciences of the United States of America 94(6):2204-2209.
    49. Kim HM, Kang DK, Kim HY, Kang SS, & Chang SI (2007) Angiogenin-induced protein kinase B/Akt activation is necessary for angiogenesis but is independent of nuclear translocation of angiogenin in HUVE cells. Biochemical and biophysical research communications 352(2):509-513.
    50. Liu S, Yu D, Xu ZP, Riordan JF, & Hu GF (2001) Angiogenin activates Erk1/2 in human umbilical vein endothelial cells. Biochemical and biophysical research communications 287(1):305-310.
    51. Xu Z, Monti DM, & Hu G (2001) Angiogenin activates human umbilical artery smooth muscle cells. Biochemical and biophysical research communications 285(4):909-914.
    52. Hu GF, Strydom DJ, Fett JW, Riordan JF, & Vallee BL (1993) Actin is a binding protein for angiogenin. Proceedings of the National Academy of Sciences of the United States of America 90(4):1217-1221.
    53. Hu GF, Chang SI, Riordan JF, & Vallee BL (1991) An angiogenin-binding protein from endothelial cells. Proceedings of the National Academy of Sciences of the United States of America 88(6):2227-2231.
    54. Hu G, Riordan JF, & Vallee BL (1994) Angiogenin promotes invasiveness of cultured endothelial cells by stimulation of cell-associated proteolytic activities. Proceedings of the National Academy of Sciences of the United States of America 91(25):12096-12100.
    55. Wei S, Gao X, Du J, Su J, & Xu Z (2011) Angiogenin enhances cell migration by regulating stress fiber assembly and focal adhesion dynamics. PloS one 6(12):e28797.
    56. Miyake M, Goodison S, Lawton A, Gomes-Giacoia E, & Rosser CJ (2015) Angiogenin promotes tumoral growth and angiogenesis by regulating matrix metallopeptidase-2 expression via the ERK1/2 pathway. Oncogene 34(7):890-901.
    57. Aparicio-Erriu IM & Prehn JH (2012) Molecular Mechanisms in Amyotrophic Lateral Sclerosis: The Role of Angiogenin, a Secreted RNase. Frontiers in neuroscience 6:167.
    58. Steidinger TU, Standaert DG, & Yacoubian TA (2011) A neuroprotective role for angiogenin in models of Parkinson's disease. Journal of neurochemistry 116(3):334-341.
    59. Miyake H, et al. (1999) Increased angiogenin expression in the tumor tissue and serum of urothelial carcinoma patients is related to disease progression and recurrence. Cancer 86(2):316-324.
    60. Montero S, Guzman C, Cortes-Funes H, & Colomer R (1998) Angiogenin expression and prognosis in primary breast carcinoma. Clinical cancer research : an official journal of the American Association for Cancer Research 4(9):2161-2168.
    61. Etoh T, Shibuta K, Barnard GF, Kitano S, & Mori M (2000) Angiogenin expression in human colorectal cancer: the role of focal macrophage infiltration. Clinical cancer research : an official journal of the American Association for Cancer Research 6(9):3545-3551.
    62. Yoshioka N, Wang L, Kishimoto K, Tsuji T, & Hu GF (2006) A therapeutic target for prostate cancer based on angiogenin-stimulated angiogenesis and cancer cell proliferation. Proceedings of the National Academy of Sciences of the United States of America 103(39):14519-14524.
    63. Kishimoto K, et al. (2012) Hypoxia-induced up-regulation of angiogenin, besides VEGF, is related to progression of oral cancer. Oral oncology 48(11):1120-1127.
    64. Hartmann A, et al. (1999) Hypoxia-induced up-regulation of angiogenin in human malignant melanoma. Cancer research 59(7):1578-1583.
    65. Sebastia J, et al. (2009) Angiogenin protects motoneurons against hypoxic injury. Cell death and differentiation 16(9):1238-1247.
    66. Koga K, et al. (2001) Demonstration of angiogenin in human endometrium and its enhanced expression in endometrial tissues in the secretory phase and the decidua. The Journal of clinical endocrinology and metabolism 86(11):5609-5614.
    67. Suzumori N, Zhao XX, & Suzumori K (2004) Elevated angiogenin levels in the peritoneal fluid of women with endometriosis correlate with the extent of the disorder. Fertility and sterility 82(1):93-96.
    68. Steff AM, et al. (2004) Serum concentrations of insulin-like growth factor-1, soluble tumor necrosis factor receptor-1 and angiogenin in endometriosis patients. American journal of reproductive immunology (New York, N.Y. : 1989) 51(2):166-173.
    69. Pereira FA, Qiu Y, Zhou G, Tsai MJ, & Tsai SY (1999) The orphan nuclear receptor COUP-TFII is required for angiogenesis and heart development. Genes & development 13(8):1037-1049.
    70. Qin J, Chen X, Xie X, Tsai MJ, & Tsai SY (2010) COUP-TFII regulates tumor growth and metastasis by modulating tumor angiogenesis. Proceedings of the National Academy of Sciences of the United States of America 107(8):3687-3692.
    71. Takamoto N, et al. (2005) Haploinsufficiency of chicken ovalbumin upstream promoter transcription factor II in female reproduction. Molecular endocrinology (Baltimore, Md 19(9):2299-2308.
    72. Kim BJ, Takamoto N, Yan J, Tsai SY, & Tsai MJ (2009) Chicken Ovalbumin Upstream Promoter-Transcription Factor II (COUP-TFII) regulates growth and patterning of the postnatal mouse cerebellum. Developmental biology 326(2):378-391.
    73. Zeitoun K, Takayama K, Michael MD, & Bulun SE (1999) Stimulation of aromatase P450 promoter (II) activity in endometriosis and its inhibition in endometrium are regulated by competitive binding of steroidogenic factor-1 and chicken ovalbumin upstream promoter transcription factor to the same cis-acting element. Molecular endocrinology (Baltimore, Md 13(2):239-253.
    74. Attar E, et al. (2009) Prostaglandin E2 via steroidogenic factor-1 coordinately regulates transcription of steroidogenic genes necessary for estrogen synthesis in endometriosis. The Journal of clinical endocrinology and metabolism 94(2):623-631.
    75. Lin SC, et al. (2014) Suppression of COUP-TFII by proinflammatory cytokines contributes to the pathogenesis of endometriosis. The Journal of clinical endocrinology and metabolism:jc20133717.
    76. Sun HS, Hsiao KY, Hsu CC, Wu MH, & Tsai SJ (2003) Transactivation of steroidogenic acute regulatory protein in human endometriotic stromalcells is mediated by the prostaglandin EP2 receptor. Endocrinology 144(9):3934-3942.
    77. Kishimoto K, Liu S, Tsuji T, Olson KA, & Hu GF (2005) Endogenous angiogenin in endothelial cells is a general requirement for cell proliferation and angiogenesis. Oncogene 24(3):445-456.

    無法下載圖示 校內:2026-12-31公開
    校外:2026-12-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE