| 研究生: |
鐘冠閔 Chung, Guan-Min |
|---|---|
| 論文名稱: |
密閉式充水阻抗管之研發與應用 Development of a closed water-filled impedance tube and its applications |
| 指導教授: |
黃清哲
Huang, Ching-Jer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | 密閉式充水阻抗管 、三參數校正 、反射係數 、加壓系統 |
| 外文關鍵詞: | closed water-filled impedance tube, three-parameter calibration, reflection coefficient, pressurized system |
| 相關次數: | 點閱:84 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為量測吸音材料於水中的聲學特性,本研究使用充水阻抗管,以三參數校正法進行校正,可以作為水體檢驗與量測試片的方法。並且自行研發加壓系統,對管內環境進行加壓,以便瞭解吸音材料於不同水深下的聲學特性。
為驗證實驗的可重複性,於同一天內與不同天進行吸音材與鋼片的量測,比較實驗結果可發現,同一天進行量測的吸音材反射係數幾乎重合,而不同天量測的結果,則有微小的誤差。推測是環境溫度、水質、試片擺放位置差異所造成。但是當測試材料換成鋼片時,發現量測結果沒有重複性;推測原因為加壓的充水阻抗管中仍有微小氣泡附著於鋼片上,影響實驗結果。
本文實驗進行了橡膠多孔性材質的吸音試片量測,試片厚度分別為25 mm、50 mm、75 mm,且分別於1 Patm、4 Patm、8 Patm三種壓力條件下進行量測與比較,希望藉此瞭解橡膠多孔性材質於不同厚度與壓力下的聲學特性。試驗結果顯示試片的聲波反射係數與試片厚度與水中壓力之間並無明顯關係,但75 mm的試片存在較低的反射係數平均值,且25 mm與75 mm的試片於各壓力條件下的反射係數趨勢較相近。
本研究所採用的試片為橡膠多孔性材質,此材質於不同製程下,存在不同的腔室大小,且其腔室受到擠壓變形,容易出現不穩定的狀態。本文旨在建立一套研究材料於不同水壓下之聲學特性的量測系統,藉由此系統找出最合適的水中吸音材料。
This study develops a closed water-filled impedance tube with a pressurized system to measure the acoustic characteristics of underwater sound-absorbing materials. Experi-ments are conducted using a three-parameter calibration method to calculate the reflec-tion coefficient and acoustic impedance of the materials. To verify the repeatability of the experiment, measurements are taken on the same day and on different days. The re-sults indicate that the rubber porous material sample has the highest repeatability, but the steel sample has the worst repeatability, probably because tiny bubbles are attached to the steel sample during the pressurization process. In addition, experiments are con-ducted for 25-, 50-, and 75-mm-thick rubber samples under different pressure condi-tions. Although no obvious relationship between the reflection coefficients and the sam-ple thickness as well as the water pressure is observed; however, at higher pressure, the reflection coefficient of the 75-mm sample is lower. The samples used in the study are still in the experimental stage; therefore, different production procedures have chambers of different sizes, which are unstable under various pressure conditions. In the future, this system can be used to measure the properties of different materials under various pressure conditions and thus to determine materials that are stable under high pressure and have a low reflection coefficient.
第六章 參考文獻
[1] Bodén, H. and Åbom, M., "Influence of errors on the two‐microphone method for measuring acoustic properties in ducts," The Journal of the Acoustical Society of America, Vol. 79 (2), pp. 541-549, 1986.
[2] Chung, J. Y. and Blaser, D. A., "Transfer function method of measuring in‐duct acoustic properties. I. Theory," The Journal of the Acoustical Society of America, Vol. 68 (3), pp. 907-913, 1980.
[3] Chung, J. Y. and Blaser, D. A., "Transfer function method of measuring in‐duct acoustic properties. II. Experiment," The Journal of the Acoustical Society of America, Vol. 68 (3), pp. 914-921, 1980.
[4] Corbett III, S. S., "A two-hydrophone technique for measuring the complex reflectivity of materials in water-filled tubes," DTIC Document1982, 1982.
[5] Del Grosso, V. A., "Analysis of multimode acoustic propagation in liquid cylinders with realistic boundary conditions - application to sound speed and absorption measurements," Acta Acustica united with Acustica, Vol. 24 (6), pp. 299-311, 1971.
[6] Dunlop, J. I., "Measurement of acoustic attenuation in marine sediments by impedance tube," The Journal of the Acoustical Society of America, Vol. 91 (1), pp. 460-469, 1992.
[7] Gibiat, V. and Laloë, F., "Acoustical impedance measurements by the two‐microphone‐three‐calibration (TMTC) method," The Journal of the Acoustical Society of America, Vol. 88 (6), pp. 2533-2545, 1990.
[8] Jones, M. G. and Stiede, P. E., "Comparison of methods for determining specific acoustic impedance," The Journal of the Acoustical Society of America, Vol. 101 (5), pp. 2694-2704, 1997.
[9] Kinsler, L. E., Frey, A. R., Coppens, A. B., and Sanders, J. V., Fundamentals of acoustics. ISBN 0-471-84789-5. Wiley-VCH, 1999.
[10] Lafleur, L. D. and Shields, F. D., "Low‐frequency propagation modes in a liquid‐filled elastic tube waveguide," The Journal of the Acoustical Society of America, Vol. 97 (3), pp. 1435-1445, 1995.
[11] Seybert, A. F. and Ross, D. F., "Experimental determination of acoustic properties using a two‐microphone random‐excitation technique," The Journal of the Acoustical Society of America, Vol. 61 (5), pp. 1362-1370, 1977.
[12] Seybert, A. F. and Soenarko, B., "Error analysis of spectral estimates with application to the measurement of acoustic parameters using random sound fields in ducts," The Journal of the Acoustical Society of America, Vol. 69 (4), pp. 1190-1199, 1981.
[13] ASTM, "Standard Test Method for Impedance and Absorption of Acoustical Materials by the Impedance Tube Method," ed: ASTM International, 1998.
[14] ASTM, "Standard Test Method for Impedance and Absorption of Acoustical Materials Using A Tube, Two Microphones and A Digital Frequency Analysis System," ed: ASTM International, 2006.
[15] Wilson, P. S., Sound propagation and scattering in bubbly liquids. Ph.D. Dissertation, College of Engineering, Boston University, 2002.
[16] Wilson, P. S., Roy, R. A., and Carey W. M., "An improved water-filled impedance tube," The Journal of the Acoustical Society of America, Vol. 113 (6), pp. 3245-3252, 2003.
[17] 朱金華, 王源升, 文慶珍, 姚樹人, “水聲吸聲高分子材料的發展及應用,” 高分子材料科學與工程, 第21卷第4期, 46-50頁, 2005.
[18] 周城光, 白國鋒, 劉碧龍, 李曉東, "充水阻抗管中测量材料聲學性能的校准方法研究," 聲學學報, 第35卷第2期, 154-161頁, 2010.
[19] 姜聞文, 陳光冶, 朱彥, “静水壓變化下膠結構吸聲性能的計算與分析,” 噪聲與振動控制, 第26卷第5期, 55-57頁, 2006.
[20] 董昌銘, 利用充水阻抗管及三參數校正法量測材料在水中的聲音阻抗, 碩士論文, 水利及海洋工程學系, 成功大學, 2017.
[21] 黃清哲, 林彥岑, 張宏煜, 田宗謨, 許泰文, "水中聲波通過氣泡幕衰減特性實驗探討," 海洋工程學刊, 第16卷第1期,43-53頁, 2016.
[22] 簡志宇, 以注水彈性阻抗管測量材料之水中聲學特性之研究, 碩士論文, 工程科學及海洋工程學研究所, 臺灣大學, 2005.
校內:2022-07-01公開