| 研究生: |
簡壬存 Jian, Ren-Cun |
|---|---|
| 論文名稱: |
開放矩形外殼內具有穿孔鰭片的自然對流熱傳研究 Study on natural convection heat transfer in an open cavity with a perforated fin |
| 指導教授: |
陳寒濤
Chen, Han-Taw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 逆向數值方法 、開放式空腔 、自然對流 、水平穿孔鰭片 |
| 外文關鍵詞: | inverse numerical method, open cavity, natural convection, perforated fin |
| 相關次數: | 點閱:116 下載:35 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文為優化板鰭式加熱器於空腔內之散熱效果,本文使用逆向數值方法為運用實驗溫度量測值與逆算法搭配CFD軟體精確未知物理量之方法,並於後續探討在穿孔鰭片在空腔中自然對流的熱傳特性。此外,可利用CFD軟體之後處理功能提供三維可視化之流場、溫度場等重要參數以利於後續的分析,本文為了確保CFD軟體計算的正確性,事先進行網格劃分及選用精確度較高的紊流數值模型是必要的,結果顯示在Nc = 1的情況下,選用零方程式作為紊流模型計算已具有足夠的準確性且可以大量縮短計算時間,僅Nc = 3的情況下須選用RNG k-ε搭配標準壁面函數處理較符合實驗結果。
本文透過改變鰭片長度、鰭片穿孔數目、冷壁開口數量及高度,探討其對∆T_f與¯h_f之影響,結果表示Lf從30 mm增加至70 mm時,∆T_f分別為3.138 K、5.627 K 及6.988 K,分別提升79 %及24 %,利用熱傳面積的增加與流體進行更多的熱交換,得到更好的散熱較果;改變鰭片穿孔數量,由模擬結果可得Nf = 1與Nf = 3的h ̅_f各為2.69 W/ m2·K及2.81 W/ m2·K,提升約4.8 %,再次驗證穿孔數量的提升能夠增強鰭片附近的熱對流強度,且由流線圖可得鰭片穿孔附近的流速提高至約0.1 m/s;改變冷壁開口高度及數量,Nc = 1時,H_d=H_c/4提高至H_d = 3H_c/4,h ̅_f分別提升5.5 %、1.4 %;Nc = 3時,h ̅_f提升78.5%。此研究結果皆表明三種變因皆可作為改善熱傳效果的參數
The present study shows an optimization of cooling in heat exchangers. Appling the inverse numerical method and computational fluid dynamics (CFD) software along with experimental method to predict the heat transfer and fluid characteristics of a fin on the hot wall. In order to verify the temperature distribution and flow characteristics, selecting an acceptable flow model and mesh grid independence study are necessary. In the cases of N_c= 1, The numerical results and experimental temperature data are closest when the zero equation model is used. In the cases of N_c= 3, The flow model need to choose RNG k-ε model with standard wall funtion. This study discusses the effect of ∆T_f and ¯h_f by changing parameters, such us fin lengths(L_f), perforation numbers(N_f), opening altitude(H_d) and opening numbers(N_c). The results in CFD simulation show that when L_f increases from 30 mm to 70 mm, ∆T_f increases by 79 % and 24 %, respectively. When N_f increases from 1 to 3, h ̅_f increases by 4.8%. Besides, It can be seen from the streamline diagram that the flow velocity around the perforated fin increases to about 0.1 m/s. In the cases of N_c= 1, when H_d increases from H_c/4 to 3H_c/4, h ̅_f increases by 5.5% andd 1.4%. In the cases of N_c= 3, h ̅_f increases by 78.5%. The results show that this four variables can be the control parameters for heat and fluid flow for cooling periods.
[1] I.V. Miroshnichenko,M.A. Sheremet, Turbulent natural convection heat transfer in rectangular enclosures using experimental and numerical approaches: A review. Renewable and Sustainable Energy Reviews. 82(Part 1) (2018) 40-59.
[2] H.F. Oztop, L. Kolsi, A. Alghamdi, N. Abu-Hamdeh, M.N. Borjini, H. Ben Aissia, Numerical analysis of entropy generation due to natural convection in three-dimensional partially open enclosures. Journal of the Taiwan Institute of Chemical Engineers. 75 (2017) 131-140.
[3] E. Yu,Y. Joshi, A numerical study of three-dimensional laminar natural convection in a vented enclosure. International Journal of Heat and Fluid Flow. 18(6) (1997) 600-612.
[4] A.H. Abib,Y. Jaluria, Numerical simulation of the buoyancy-induced flow in a partially open enclosure. Numerical Heat Transfer. 14(2) (1988) 235-254.
[5] E. Yu,Y.K. Joshi, Natural convection air cooling of electronic components in partially open compact horizontal enclosures. 1998. p. 51-57.
[6] X. Shi,J.M. Khodadadi, Laminar natural convection heat transfer in a differentially heated square cavity due to a thin fin on the hot wall. Journal of Heat Transfer. 125(4) (2003) 624-634.
[7] F. Ampofo, Turbulent natural convection of air in a non-partitioned or partitioned cavity with differentially heated vertical and conducting horizontal walls. Experimental Thermal and Fluid Science. 29(2) (2005) 137-157.
[8] K. Khanafer, A. Alamiri, J. Bull, Laminar natural convection heat transfer in a differentially heated cavity with a thin porous fin attached to the hot wall. International Journal of Heat and Mass Transfer. 87 (2015) 59-70.
[9] F. Xu, J.C. Patterson, C. Lei, Transient natural convection flows around a thin fin on the sidewall of a differentially heated cavity. Journal of Fluid Mechanics. 639 (2009) 261-290.
[10] F. Xu, J.C. Patterson, C. Lei, An experimental study of the unsteady thermal flow around a thin fin on a sidewall of a differentially heated cavity. International Journal of Heat and Fluid Flow. 29(4) (2008) 1139-1153.
[11] F. Xu, J.C. Patterson, C. Lei, Transition to a periodic flow induced by a thin fin on the sidewall of a differentially heated cavity. International Journal of Heat & Mass Transfer. 52(3/4) (2009) 620-628.
[12] A. Ben-Nakhi, M.M. Efterkhari, D.I. Loveday, Natural convection heat transfer in a partially open square cavity with a thin fin attached to the hot wall. Journal of Heat Transfer. 130(5) (2008).
[13] S. Humaira Tasnim,M.R. Collins, Numerical analysis of heat transfer in a square cavity with a baffle on the hot wall. International Communications in Heat and Mass Transfer. 31(5) (2004) 639-650.
[14] A. Maji, D. Bhanja, P.K. Patowari, Numerical investigation on heat transfer enhancement of heat sink using perforated pin fins with inline and staggered arrangement. APPLIED THERMAL ENGINEERING. 125 (2017) 596-616.
[15] M.F. Ismail, M.N. Hasan, M. Ali, Numerical simulation of turbulent heat transfer from perforated plate-fin heat sinks. Heat and Mass Transfer/Waerme- und Stoffuebertragung. 50(4) (2014) 509-519.
[16] M.R. Shaeri,M. Yaghoubi, Thermal enhancement from heat sinks by using perforated fins. Energy Conversion and Management. 50(5) (2009) 1264-1270.
[17] Z. Altaç,N. Uğurlubilek, Assessment of turbulence models in natural convection from two- and three-dimensional rectangular enclosures. International Journal of Thermal Sciences. 107 (2016) 237-246.
[18] G. Barakos, E. Mitsoulis, D. Assimacopoulos, Natural convection flow in a square cavity revisited: Laminar and turbulent models with wall functions. International Journal for Numerical Methods in Fluids. 18(7) (1994) 695-719.
[19] Q. Chen,W. Xu, A zero-equation turbulence model for indoor airflow simulation. Energy and Buildings. 28(2) (1998) 137-144.
[20] I. Staroselsky, A. Yakhot, S.A. Orszag, Asymptotic behavior of solutions of the renormalization group k-epsilon turbulence model. (1994).
[21] S. Sarkar,B. Lakshmanan, Application of a reynolds stress turbulence model to the compressible shear layer. AIAA Journal. 29(5) (1991) 743-749.
[22] F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal. 32(8) (1994) 1598-1605.
[23] D.C. Wilcox, Reassessment of the scale-determining equation for advanced turbulence models. AIAA Journal. 26(11) (1988) 1299-1310.
[24] M.N. özişik,H.R.B. Orlande, Inverse heat transfer : Fundamentals and applications. (2000).
[25] 何為民, 熱壁上具鰭片之開口傾斜空腔內的三維自然對流熱傳研究, 國立成功大學機械工程學系, 台灣(2021).
[26] 鄭宇鈞, 垂直鰭片於封閉矩形空腔內三維自然對流中熱傳特性研究, 國立成功大學機械工程學系, 台灣(2021).
[27] 蘇威諺, 三維CFD逆向方法於矩形空腔內之自然對流的熱傳研究, 國立成功大學機械工程學系, 台灣(2021).
[28] V.S. Arpaci, S.H. Kao, A. Selamet, Introduction to heat transfer. 1999: Prentice Hall.
[29] C. Yunus,G. Afshin, Ise ebook online access for heat and mass transfer: Fundamentals and applications. (2019).
[30] S.V. Patankar, Numerical heat transfer and fluid flow. Series in computational methods in mechanics and thermal sciences. 1980: Hemisphere Pub. Corp.
[31] H.N. Dixit,V. Babu, Simulation of high rayleigh number natural convection in a square cavity using the lattice boltzmann method. International Journal of Heat and Mass Transfer. 49(3) (2006) 727-739.
[32] K. Hanjalić,S. Vasić, Computation of turbulent natural convection in rectangular enclosures with an algebraic flux model. International Journal of Heat and Mass Transfer. 36(14) (1993) 3603-3624.
[33] T. Fusegi, J.M. Hyun, K. Kuwahara, B. Farouk, A numerical study of three-dimensional natural convection in a differentially heated cubical enclosure. International Journal of Heat and Mass Transfer. 34(6) (1991) 1543-1557.
[34] T.K. Ibrahim, M.N. Mohammed, M. Kamil Mohammed, G. Najafi, N. Azwadi Che Sidik, F. Basrawi, A.N. Abdalla, S.S. Hoseini, Experimental study on the effect of perforations shapes on vertical heated fins performance under forced convection heat transfer. International Journal of Heat and Mass Transfer. 118 (2018) 832-846.
[35] M.R. Shaeri, M. Yaghoubi, K. Jafarpur, Heat transfer analysis of lateral perforated fin heat sinks. Applied Energy. 86(10) (2009) 2019-2029.