| 研究生: |
楊智勝 Yang, Chih-Sheng |
|---|---|
| 論文名稱: |
天麻素及天麻苷元調控癲癇嚴重度及神經興奮性毒性之角色 The role of gastrodin and gastrodigenin in modulating seizure severity and neuronal excitotoxicity |
| 指導教授: |
黃欽威
Huang, Chin-Wei 劉秉彥 Liu, Ping-Yen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 臨床醫學研究所碩士在職專班 Institute of Clinical Medicine(on the job class) |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 48 |
| 中文關鍵詞: | 天麻素 、天麻苷元 、顳葉癲癇 、Lithium-Pilocarpine 模型 、神經興奮性毒性 |
| 外文關鍵詞: | gastrodin, gastrodigenin, temporal lobe epilepsy, lithium-pilocarpine model, neuroexcitotoxicity |
| 相關次數: | 點閱:84 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
顳葉癲癇是成人常見的頑固性癲癇病因之一,有約三分之一患者仍無法達到理想癲癇控制,且大多藥物僅是症狀控制,無法預防癲癇生成。我們將於本實驗中探討傳統中藥天麻其活性藥理成分天麻素 (gastrodin)及天麻苷元 (gastrodigenin) 於lithium-pilocarpine 誘發癲癇重積動物模式中是否可減輕癲癇嚴重度及抑制神經興奮毒性並探討相關背後機轉。
我們利用行為觀察及動物腦波記錄來探討經天麻素及天麻苷元處理後,在lithium-pilocarpine 誘發癲癇重積動物模式中癲癇發作之程度。病理組織切片探討急性與亞急性海馬迴神經元損傷程度。膜片鉗實驗研究在天麻素及天麻苷元處理下不同離子通道的電生理特性改變。以西方墨點法探討在經天麻素及天麻苷元處理過的大鼠海馬迴其γ-氨基丁酸傳遞及離子通道的蛋白質表現變化。
在本實驗中,我們發現天麻素及高劑量的天麻苷元可降低癲癇嚴重程度及抑制癲癇樣放電波之生成。天麻素也展現了神經保護之功能。於膜片鉗實驗中,天麻素及天麻苷元可抑制L型鈣離子電流及M型鉀離子電流,但對於鈉離子通道並無調節作用。西方墨點法研究發現天麻素及天麻苷元可抑制L型鈣離子通道及M型鉀離子通道的蛋白質表現,也可減少γ-氨基丁酸A型受體在癲癇發作後的降解。
天麻素及高劑量的天麻苷元的純化合物在癲癇重積動物模式中可減少癲癇發作造成的興奮性毒性,可提供神經元保護之效果。其對於鈣、鉀離子通道電流之調控及增強γ-氨基丁酸傳遞在抗癲癇機轉上扮演重要角色。未來可做為研發新的抗癲癇藥之選項。
Temporal lobe epilepsy remains one of drug-resistant focal epilepsy among adult epilepsy syndromes. Only two-third patients become seizure-free with current medical treatment. Many research efforts aim to develop new intervention strategies or drug repurposing from the traditional herb medicine to treat epilepsy and ameliorate the seizure related neuronal excitoxicity. Herein, we conducted a study to determine whether pure synthetic gastrodin and its active aglycone metabolite gastrodigenin can reduce lithium-pilocarpine induced seizure severity and neuronal excitotoxicity. The underlying mechanism was investigated.
We performed the behavioral analysis and electroencephalography to determine the effect of gastrodin and gastrodigenin on the seizure severity induced by lithium-pilocarpine injection. Histopathologic examination elucidated the degree of rat hippocampal neuronal damage as markers of acute and subacute neuronal excitotoxicity. In in vitro studies, the patch clamp examination was used to clarify the alteration of electrophysiological properties of different ion channels with treatment of gastrodin and gastrodigenin. The Western blot experiment was carried out to demonstrate the protein expression of GABAergic neurotransmitters and ion channels after addition of gastrodin and gastrodigenin in the rat hippocampus.
We found that gastrodin and high-dose gastrodigenin reduced the acute seizure severity in lithium-pilocarpine-induced seizure model. In EEG recording, gastrodin and high-dose gastrodigenin demonstrated inhibitory effect of epileptiform discharge. Gastrodin also exhibited neuroprotection effect against seizure related hippocampal neuronal damage. The patch clamp studies revealed that gastrodin and gastrodigenin suppressed L-type Ca2+ current. Surprisingly, gastrodin and gastrodigenin also demonstrated the effect of inhibitory action on M-type K+ current. However, the Na+ current did not alter as gastrodin or gastrodigenin was added. The Western blot experiment showed that gastrodin and gastrodigenin inhibited the protein expression of L-type Ca2+ channel subunit (Cav1.2) and M-type K+ channels (Kv7.2). Besides, gastrodin and gastrodigenin attenuated the degradation of GABAA receptor after pilocarpine-induced seizure.
In the in vivo and in vitro studies, we could conclude that gastrodin and gastrodigenin reduced the seizure severity and neuronal excitotoxicity induced by lithium-pilocarpine model and provided the effect of neuroprotection. The ionic effects and GABAergic modulation of gastrodin and gastrodigenin play an important role in their antiepileptic mechanism. The results offer a new insight of searching new antiepileptic drugs from traditional Chinese medicine.
1.French JA, Williamson PD, Thadani VM, et al. Characteristics of medial temporal lobe epilepsy: I. Results of history and physical examination. Ann Neurol. 1993;34(6):774-80.
2.Stephen LJ, Kwan P, Brodie MJ. Does the Cause of Localisation-Related Epilepsy Influence the Response to Antiepileptic Drug Treatment? Epilepsia. 2001;42(3):357-62.
3.Semah F, Picot MC, Adam C, et al. Is the underlying cause of epilepsy a major prognostic factor for recurrence? Neurology. 1998;51(5):1256-62.
4.Wiebe S, Blume WT, Girvin JP, et al. A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med. 2001;345(5):311-8.
5.Engel J Jr, McDermott MP, Wiebe S, et al. Early surgical therapy for drug-resistant temporal lobe epilepsy: a randomized trial. JAMA. 2012;307(9):922-30.
6.Löscher W, Brandt C. Prevention or modification of epileptogenesis after brain insults: experimental approaches and translational research. Pharmacol Rev. 2010;62(4):668-700.
7.Löscher W. Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure. 2011;20(5):359-68.
8.Clifford DB, Olney JW, Maniotis A, et al. The functional anatomy and pathology of lithium-pilocarpine and high-dose pilocarpine seizures. Neuroscience 1987;23:953–68.
9.Hamilton SE, Loose MD, Qi M, et al. Disruption of the m1 receptor gene ablates muscarinic receptor-dependent M current regulation and seizure activity in mice. Proc Natl Acad Sci USA 1997;94:13311–6.
10.Smolders I, Khan GM, Manil J, et al. NMDA receptor-mediated pilocarpine-induced seizures: characterization in freely moving rats by microdialysis. Br J Pharmacol 1997;121:1171–9.
11.André V, Marescaux C, Nehlig A, et al. Alterations of hippocampal GABAergic system contribute to development of spontaneous recurrent seizures in the rat lithium-pilocarpine model of temporal lobe epilepsy. Hippocampus. 2001;11(4):452-68.
12.Soukupová M, Binaschi A, Falcicchia C, et al. Impairment of GABA release in the hippocampus at the time of the first spontaneous seizure in the pilocarpine model of temporal lobe epilepsy. Exp Neurol. 2014;257:39-49.
13.Becker AJ, Pitsch J, Sochivko D, et al. Transcriptional upregulation of Cav3.2 mediates epileptogenesis in the pilocarpine model of epilepsy. J Neurosci. 2008;28(49):13341-53.
14.Raza M, Blair RE, Sombati S, et al. Evidence that injury-induced changes in hippocampal neuronal calcium dynamics during epileptogenesis cause acquired epilepsy. Proc Natl Acad Sci U S A. 2004;101(50):17522-7.
15.Meisler MH, Kearney JA. Sodium channel mutations in epilepsy and other neurological disorders. J Clin Invest. 2005;115(8):2010-7.
16.Escayg A, MacDonald BT, Meisler MH, et al. Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2. Nat Genet 2000;24, 343–345.
17.Claes L, Del‐Favero J, Ceulemans B, et al. De novo mutations in the sodium‐channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am J Hum Genet 2001;68, 1327–1332.
18.Köhling R, Wolfart J. Potassium Channels in Epilepsy. Cold Spring Harb Perspect Med. 2016;6(5). pii: a022871. doi: 10.1101/cshperspect.a022871.
19.Schenzer A1, Friedrich T, Pusch M, et al. Molecular determinants of KCNQ (Kv7) K+ channel sensitivity to the anticonvulsant retigabine. J Neurosci. 2005;25(20):5051-60.
20.Xu JH, Tang FR. Voltage-Dependent Calcium Channels, Calcium Binding Proteins, and Their Interaction in the Pathological Process of Epilepsy. Int J Mol Sci. 2018;19(9). pii: E2735. doi: 10.3390/ijms19092735.
21.Zamponi GW, Lory P, Perez-Reyes E. Role of voltage-gated calcium channels in epilepsy. Pflugers Arch. 2010;460(2):395-403.
22.Kelly, KM, Ikonomovic, MD, Abrahamson, EE, et al. Alterations in hippocampal voltage-gated calcium channel alpha 1 subunit expression patterns after kainate-induced status epilepticus in aging rats. Epilepsy Res. 2003;57:15–32.
23.White HS, Smith MD, Wilcox KS. Mechanisms of action of antiepileptic drugs. Int Rev Neurobiol. 2007;81:85-110.
24.Galanopoulou AS. Mutations affecting GABAergic signaling in seizures and epilepsy. Pflugers Arch. 2010;460(2):505-23. doi: 10.1007/s00424-010-0816-2.
25.Kälviäinen R, Halonen T, Pitkänen A, et al. Amino acid levels in the cerebrospinal fluid of newly diagnosed epileptic patients: effect of vigabatrin and carbamazepine monotherapies. J Neurochem. 1993;60(4):1244-50.
26.Patsalos, PN. New antiepileptic drugs. Ann. Clin. Biochem. 1999;36:10-19.
27.Loup F, Wieser HG, Yonekawa Y, et al. Selective alterations in GABAA receptor subtypes in human temporal lobe epilepsy. J Neurosci. 2000;20(14):5401-19.
28.Zhan HD, Zhou HY, Sui YP, et al. The rhizome of Gastrodia elata Blume - An ethnopharmacological review. J Ethnopharmacol. 2016;189:361-85.
29.Ojemann LM, Nelson WL, Shin DS, et al. Tian ma, an ancient Chinese herb, offers new options for the treatment of epilepsy and other conditions. Epilepsy Behav. 2006;8(2):376-83.
30.Jang JH, Son Y, Kang SS, et al. Neuropharmacological Potential of Gastrodia elata Blume and Its Components. Evid Based Complement Alternat Med. 2015:309261. doi: 10.1155/2015/309261.
31.Jiang G, Wu H, Hu Y, et al. Gastrodin inhibits glutamate-induced apoptosis of PC12 cells via inhibition of CaMKII/ASK-1/p38 MAPK/p53 signaling cascade. Cell Mol Neurobiol. 2014;34(4):591-602.
32.Wong SB, Hung WC, Min MY. The Role of Gastrodin on Hippocampal Neurons after N-Methyl-D-Aspartate Excitotoxicity and Experimental Temporal Lobe Seizures. Chin J Physiol. 2016;59(3):156-64.
33.Shao H, Yang Y, Qi AP, et al. Gastrodin Reduces the Severity of Status Epilepticus in the Rat Pilocarpine Model of Temporal Lobe Epilepsy by Inhibiting Nav1.6 Sodium Currents. Neurochem Res. 2017;42(2):360-374.
34.Guo Y, Su Y, Shen CH, et al. 4-Hydroxybenzyl Alcohol Prevents Epileptogenesis As Well As Neuronal Damage in Amygdaloid Kindled Seizures. J Neurol Neurosci. 2017, 8:1. Doi: 10.21767/2171-6625.1000175.
35.Lai MC, Hung TY, Lin KM, et al. Sodium Metabisulfite: Effects on Ionic Currents and Excitotoxicity. Neurotox Res. 2018;34(1):1-15.
36.Racine RJ. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalography and Clinical Neurophysiology. 1972;32:281-94.
37.Huang CW, Cheng JT, Tsai JJ, et al. Diabetic hyperglycemia aggravates seizures and status epilepticus-induced hippocampal damage. Neurotox Res. 2009;15(1):71-81.
38.Pitkanen A, Schwartzkroin PA, Moshe SL (2006) Models of seizures and epilepsy. Elsevier Academic Press, Burlington.
39.Huang NK, Chern Y, Fang JM, et al. Neuroprotective principles from Gastrodia elata. J Nat Prod. 2007;70(4):571-4.
40.Sloviter RS. Status epilepticus-induced neuronal injury and network reorganization. Epilepsia. 1999;40 Suppl 1:S34-9.
41.Barkmeier DT, Loeb JA. An animal model to study the clinical significance of interictal spiking. Clin EEG Neurosci. 2009;40(4):234-8.
42.Chen L, Liu X, Wang H, et al. Gastrodin Attenuates Pentylenetetrazole-Induced Seizures by Modulating the Mitogen-Activated Protein Kinase-Associated Inflammatory Responses in Mice. Neurosci Bull. 2017;33(3):264-272.
43.Hsieh CL, Chiang SY, Cheng KS, et al. Anticonvulsive and free radical scavenging activities of Gastrodia elata Bl. in kainic acid-treated rats. Am J Chin Med. 2001;29(2):331-41.
44.Kim HJ, Moon KD, Oh SY, et al. Ether fraction of methanol extracts of Gastrodia elata, a traditional medicinal herb, protects against kainic acid-induced neuronal damage in the mouse hippocampus. Neurosci Lett. 2001;314(1-2):65-8.
45.Shao H, Yang Y, Qi AP, et al. Gastrodin Reduces the Severity of Status Epilepticus in the Rat Pilocarpine Model of Temporal Lobe Epilepsy by Inhibiting Nav1.6 Sodium Currents. Neurochem Res. 2017;42(2):360-374.
46.An SJ, Park SK, Hwang IK, et al. Gastrodin decreases immunoreactivities of gamma-aminobutyric acid shunt enzymes in the hippocampus of seizure-sensitive gerbils. J Neurosci Res. 2003;71(4):534-43.
47.Lai MC, Lin KM, Yeh PS, et al. The Novel Effect of Immunomodulator-Glatiramer Acetate on Epileptogenesis and Epileptic Seizures. Cell Physiol Biochem. 2018;50 (1):150-168.
48.Phelan KD, Shwe UT, Williams DK, et al. Pilocarpine-induced status epilepticus in mice: A comparison of spectral analysis of electroencephalogram and behavioral grading using the Racine scale. Epilepsy Res. 2015;117:90-6.
49.Deshpande LS, Lou JK, Mian A, et al. Time course and mechanism of hippocampal neuronal death in an in vitro model of status epilepticus: role of NMDA receptor activation and NMDA dependent calcium entry. Eur J Pharmacol. 2008;583(1):73-83.
50.Arundine M, Tymianski M. Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium. 2003;34(4-5):325-37.
51.Radzicki D, Yau HJ, Pollema-Mays SL, et al. Temperature-sensitive Cav1.2 calcium channels support intrinsic firing of pyramidal neurons and provide a target for the treatment of febrile seizures. The Journal of Neuroscience. 2013;33(24):9920-9931.
52.Hendrich J, Van Minh AT, Heblich F et al. Pharmacological disruption of calcium channel trafficking by the a2d ligand gabapentin. Proc. Natl Acad. Sci. USA 2008: 105(9),3628–3633.
53.Bian F, Li Z, Offord J et al.: Calcium channel a2-d type 1 subunit is the major binding protein for pregabalin in neocortex, hippocampus, amygdala, and spinal cord: an ex vivo autoradiographic study in a2-d type 1 genetically modified mice. Brain Res. 2006;1075(1),68–80.
54.Dai R, Wang T, Si X, et al. Vasodilatory effects and underlying mechanisms of the ethyl acetate extracts from Gastrodia elata. Can J Physiol Pharmacol. 2017;95(5):564-571. doi: 10.1139/cjpp-2016-0407.
55.Agrawal N, Alonso A, Ragsdale DS. Increased persistent sodium currents in rat entorhinal cortex layer V neurons in a post-status epilepticus model of temporal lobe epilepsy. Epilepsia. 2003;44(12):1601-4.
56.González OC, Krishnan GP, Timofeev I, et al. Ionic and synaptic mechanisms of seizure generation and epileptogenesis. Neurobiol Dis. 2019;130:104485. doi: 10.1016/j.nbd.2019.104485.
57.Singh NA, Otto JF, Dahle EJ, et al. Mouse models of human KCNQ2 and KCNQ3 mutations for benign familial neonatal convulsions show seizures and neuronal plasticity without synaptic reorganization. J Physiol. 2008;586(14):3405-23.
58.Devaux J, Abidi A, Roubertie A, et al. A Kv7.2 mutation associated with early onset epileptic encephalopathy with suppression-burst enhances Kv7/M channel activity. Epilepsia. 2016;57(5):e87-93. doi: 10.1111/epi.13366.
59.Niday Z, Tzingounis AV. Potassium Channel Gain of Function in Epilepsy: An Unresolved Paradox. Neuroscientist. 2018;24(4):368-380. doi: 10.1177/1073858418763752.
60.Kaila K, Ruusuvuori E, Seja P, et al. GABA actions and ionic plasticity in epilepsy. Curr Opin Neurobiol. 2014;26:34-41.
61.Galanopoulou AS. GABAA Receptors in Normal Development and Seizures: Friends or Foes? Curr Neuropharmacol. 2008; 6(1): 1–20.
62.Brooks-Kayal AR, Shumate MD, Jin H, et al. Selective changes in single cell GABA (A) receptor subunit expression and function in temporal lobe epilepsy. Nat. Med. 1998;4(10), 1166-72.
63.Zhang G, Raol YH, Hsu FC, et al. Effects of status epilepticus on hippocampal GABAA receptors are age-dependent. Neuroscience. 2004;125(2),299-303.
64.Choi JJ, Oh EH, Lee MK, et al. Gastrodiae Rhizoma Ethanol Extract Enhances Pentobarbital-Induced Sleeping Behaviors and Rapid Eye Movement Sleep via the Activation of GABA A -ergic Transmission in Rodents. Evid Based Complement Alternat Med. 2014;426843. doi: 10.1155/2014/426843.
校內:2024-08-01公開