簡易檢索 / 詳目顯示

研究生: 林建志
Lin, Chien-Chih
論文名稱: 酸萃取及黃酸鹽富集回收焚化反應灰中重金屬之研究
Selective extraction and recovery of heavy metals from MSWI reaction ash by xanthate process
指導教授: 張祖恩
Chang, Juu-En
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 122
中文關鍵詞: 選擇性溶出黃酸鹽重金屬離子酸洗程序
外文關鍵詞: MSWI reaction ash, Selective extraction, Recovery, Xanthate, Heavy metal
相關次數: 點閱:121下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 都市垃圾焚化反應灰含多種重金屬及其他氧化物,以掩埋程序處置較不符合資源再利用精神,也造成掩埋空間的浪費。本研究利用多階段酸洗程序萃取焚化反應灰中重金屬,並探討利用黃酸鹽回收溶出液中重金屬之可行性。研究以半動態溶出試驗找出反應灰酸洗前處理之最適添加量,再對反應灰進行酸洗,尋求最佳酸洗操作程序。並選擇三種不同鏈長的黃酸鹽(KEX、KBX、ISX),及改變黃酸鹽與重金屬之反應莫爾比,探討不同種類黃酸鹽及黃酸鹽添加劑量去除溶出液中重金屬之效能。此外,對反應產生的錯合物進行固相分析,探討錯合物組成。綜合固液相分析結果,檢討反應灰酸洗前處理/黃酸鹽回收重金屬之最佳程序。
    研究結果顯示,反應灰酸洗溶出重金屬離子過程中,可藉酸添加劑量與反應灰溶出液pH值及溶出液中重金屬離子溶出濃度關係,求得最適酸添加量,以作為酸洗程序之加藥(酸)量參考。此外,反應灰酸洗過程中之加酸程序會影響反應灰中重金屬物種溶出,因不同pH值環境下有不同的重金屬溶出優先順序。將酸萃取液分二階段添加,第一階段酸洗pH值降到5時,Zn離子優先大量溶出,濃度達1000 mg/L左右,而此時Cu、Pb離子溶出量並不顯著;第二階段再添加足夠的酸量,使pH降至1,可再使Zn、Cu、Pb溶出達100~200 mg/L。
    此外,以三種黃酸鹽去除二階段反應灰酸洗溶出液中重金屬離子,結果發現KEX、KBX皆能有效去除第一階段反應灰酸洗溶出液中之Zn離子,其中KBX在化學計量KBX/Zn=2即可完全去除溶液中Zn離子,而KEX對Zn需添加至KEX/Zn=2.6以上才能有效去除鋅離子達放流水標準(≦ 5 mg/L),顯示KBX錯合Zn之能力較KEX來得強,主因為KBX對Zn的溶解度積較KEX對Zn的溶解度積為小。另KEX、KBX與Zn反應之錯合物經固相元素分析及IR官能基鑑定可證實為Zn(EX)2、Zn(BX)2,其錯合物Zn含量分別達14~25 %、15~20 % ,具回收再利用價值。第二階段反應灰酸洗溶出液鋅、銅、鉛離子僅能用KBX、ISX完全回收,其中ISX會先去除溶液中銅、鉛離子後才開始去除鋅離子;而KBX則同時捕集鋅、銅、鉛離子。由選擇性回收重金屬角度來看,以ISX較具應用性。
    綜合研究成果可知,利用分階段酸洗方式將反應灰中的有害金屬選擇性溶出,再搭配黃酸鹽螯合劑回收溶出液中重金屬,具不錯之分離/回收反應灰中重金屬效果,可有別於傳統將反應灰固化/穩定化後掩埋的處理方式,而達減少掩埋場空間使用及資源回收再利用之目的。

    The reaction ash from municipal solid waste incinerator(MSWI) contains various kinds of heavy metals. Landfill disposal not only disobeys the spirit of resource reuse but also wastes the landfill space. In this research, multiple stage acid extraction processes were utilized to extract metals from reaction ash and the feasibility of heavy metals recovered from the extractants by xanthate (chelating agent) was also investigated. The optimal dosage of acid extraction was examined by semi-dynamic leach tests (SDLT). Afterward, the selective extraction procedure was explored by stepwise acidic liquid addition. At the mean time, the recovery of heavy metals by three kinds of xanthates(KEX, KBX and ISX)and various xanthate/metal molar ratio was also investigated. The UV-vis spectroscopy, elemental analysis and Fourier transform infrared (FTIR) analyses were conducted to explicate a fundamental understanding of the formed metal-xanthate complex`s structure and the resudial species in the leachates. These results were addressed to evaluate the optimal procedure for selective extraction and recovery of heavy metals from MSWI reaction ash by xanthate process.
    The results from the selective extraction of MSWI reaction ash showed that the optimal dosage of acid extraction could be found by the relationship between the pH and heavy metal concentration of the leachate. It was concluded to be a two-stage extraction. In the first stage acid extraction, a great amount of Zn ion (about 1000 mg/l) was leached out from the MSWI reaction ash as the leachate`s pH decreased to 5. But the leached Cu and Pb ions were not remarkable at the same time. In the second stage acid extraction, adding more acid dosage to the residual of the first stage extraction, the Zn、Cu and Pb ions leached about 100〜200mg/l while the leachate`s pH decrease to 1. And then, three kinds of xanthate were used for heavy metal removal/recovery from the two stage leachates.
    The performance of xanthate process for Zn removal/recovery from the first stage leachate showed that KEX, KBX were capable of treating Zn-containing wastewate to meet the Taiwan EPA`s effluent regulation (Zn: 5 mg/l) when KBX/Metal molar ratio of 2, and KEX/Metal molar ratio of 2.6. The formed Zn-EX complex and Zn-BX complex contained 14~25 % and 15~20 % Zn, indicateing both complexes were worth recovering. In the heavy metal removal/recovery of the second stage extraction leachate, Zn, Cu and Pb ions could be selective removed/recovered by ISX combined with KBX. Firstly, the Cu and Pb ions could be removed by ISX, but the Zn ions were not. The residual Zn ions were then totally removed by adding KBX to the solutions. After the ISX combined with KBX treatment, the residual leachate could pass the Taiwan EPA`s effluent regulations.
    In summary, the heavy metals, such as Zn, Cu and Pb, could be separated from the MSWI reaction ash by two-stage acid extraction and then to be enriched by xanthate recovery. The treated MSWI reaction ash passed the TCLP, and could be reused in the environment or landfilled without further treatment. The two-stage acid extraction combined with xanthate recovery processes colud be used as an environmentally friendly method for treating MSWI reaction ash.

    目錄 中文摘要 I 英文摘要 IV 誌謝 VI 目錄 VIII 表目錄 XI 圖目錄 XIII 第一章 前言 1 1-1 研究動機及目的 1 1-2 研究內容 2 第二章 文獻回顧 3 2-1 焚化反應灰特性與處置現況 3 2-1-1 飛灰之種類及組成 3 2-1-2 反應灰基本特性 6 2-1-3 反應灰重金屬溶出特性 10 2-1-4 反應灰之無害化/資源化技術及處理處置現況與問題 12 2-2 Xanthate的基本特性 23 2-2-1 Alkyl xanthate的有機特性 23 2-2-2 Xanthate的反應特性 29 2-2-3 Metal-xanthate生成物特性 31 2-3 Xanthate於含重金屬離子廢水處理之應用 36 2-3-1 黃酸鹽應用於浮除廢水中重金屬 37 2-3-2 短鏈黃酸鹽沉澱去除重金屬離子 38 2-3-3 長鏈黃酸鹽吸附去除重金屬 39 2-4 金屬黃酸鹽錯合物金屬離子溶出及回收 41 2-5 小結 42 第三章 實驗設備、材料與方法 43 3-1 研究架構及實驗流程 43 3-2 實驗材料 45 3-3 實驗設備與方法 47 3-3-1 焚化反應灰基本特性分析 47 3-3-2 反應灰溶出試驗與反應灰酸洗前處理 49 3-3-3 黃酸鹽捕集實際洗灰廢水中重金屬試驗 50 3-3-4 液相之組成分析 52 3-3-5 固相錯合物之特性分析 54 第四章 結果與討論. 56 4-1 反應灰重金屬溶出潛勢 56 4-1-1 反應灰經0.1N HAc半動態溶出試驗結果 56 4-1-2 反應灰基本特性 60 4-2 反應灰酸洗前處理及利用黃酸鹽回收金屬可行性評估 63 4-2-1 反應灰酸洗前處理 63 4-2-2不同黃酸鹽對反應灰酸洗溶出液中重金屬之去除成效 65 4-3 反應灰最佳酸洗前處理及黃酸鹽回收金屬程序探討 72 4-3-1酸洗前處理最佳操作條件 72 4-3-2乙基黃酸鹽去除溶出液中重金屬離子效能 75 4-3-3正丁基黃酸鹽去除溶出液中重金屬離子效能 91 4-3-4不溶性澱粉黃酸鹽去除溶出液中重金屬離子效能 105 4-4 以黃酸鹽回收焚化反應灰中重金屬之綜合探討 117 第五章 結論與建議 120 5-1 結論 120 5-2 建議 122 參考文獻 123 表目錄 表2-1 焚化灰渣定義與說明 4 表2-2 國內焚化反應灰毒性特性溶出試驗溶出濃度 5 表2-3 國內外反應飛灰基本組成 5 表2-4 台灣地區垃圾資源回收(焚化)廠營運統計表 18 表2-5 法國灰渣分類利用標準 21 表2-6 硫系螯合劑及其衍生物 25 表2-7 銅與Xanthate之錯合物中間相關物種的紫外線吸收光譜值 27 表2-8 Xanthate官能基的IR吸收值 29 表2-9 各種金屬黃酸鹽之Ksp值 33 表2-10 銅與Xanthate 之錯合物官能基的IR吸收值 34 表4-1 A廠反應灰粒徑分布及各粒徑重金屬含量 61 表4-2 A廠反應灰元素組成與TCLP溶出濃度 62 表4-3 反應灰經不同硝酸劑量酸洗後重金屬溶出濃度 74 表4-4 反應灰經二階段硝酸酸洗後重金屬溶出濃度 76 表4-5 KEX去除第一階段反應灰酸洗溶出液中重金屬離子效能及殘存濾液特性 78 表4-6 KEX去除第一階段反應灰酸洗溶出液中重金屬離子所生成錯合物之元素組成 83 表4-7 KEX去除第二階段反應灰酸洗溶出液中重金屬離子效能及殘存濾液特性 85 表4-8 KEX去除第二階段反應灰酸洗溶出液中重金屬離子所生成錯合物之元素組成 90 表4-9 KBX去除第一階段反應灰酸洗溶出液中重金屬離子效能及殘存濾液特性 93 表4-10 KBX去除第一階段反應灰酸洗溶出液中重金屬離子所生成錯合物之元素組成 98 表4-11 KBX去除第二階段反應灰酸洗出液中重金屬離子效能及殘存濾液特性 100 表4-12 KBX去除第二階段反應灰酸洗溶出液中重金屬離子所生成錯合物之元素組成 104 表4-13 ISX去除第一階段反應灰酸洗溶出液中重金屬離子效能及殘存濾液特性 107 表4-14 ISX去除第一階段反應灰酸洗溶出液中重金屬離子所生成錯合物之元素組成 110 表4-15 ISX去除第二階段反應灰酸洗溶出液中重金屬離子效能及殘存濾液特性 113 表4-16 ISX去除第二階段反應灰酸洗溶出液中重金屬離子所生成錯合物之元素組成 115 圖目錄 圖2-1 xanthate-dixanthogen間六個可能反應途徑 28 圖3-1 實驗流程圖 44 圖3-2 Starch xanthate之合成 51 圖4-1 A廠反應灰於0.1N 醋酸半動態溶出試驗中之(a)溶出液pH值變化,(b)重金屬溶出趨勢57 圖4-2 B廠反應灰於0.1N 醋酸半動態溶出試驗中之(a)溶出液pH值變化,(b)重金屬溶出趨勢 58 圖4-3 C廠反應灰於0.1N 醋酸半動態溶出試驗中之(a)溶出液pH值變化,(b)重金屬溶出趨勢 59 圖4-4 反應灰於醋酸半動態溶出試驗累積酸劑量下之(a)溶出液pH值變化,(b)金屬累積溶出率 64 圖4-5 不同KEX/Metal反應莫爾比條件下,KEX去除(a)未回調(pH=1.2)(b)回調(pH=4.0)反應灰酸洗溶出液中鋅、銅、鉛離子效能 66 圖4-6 不同KBX/Metal反應莫爾比條件下,KBX去除(a)未回調(pH=1.2)(b)回調(pH=4.0)反應灰酸洗溶出液中鋅、銅、鉛離子效能 68 圖4-7 不同金屬硫比(S/Metal)條件下ISX去除(a)未回調(pH=1.2)(b)回調(pH=4.0)反應灰酸洗溶出液中鋅、銅、鉛離子效能 70 圖4-8 以不同硝酸劑量酸洗反應灰之溶出液pH值 73 圖4-9 反應灰經不同硝酸劑量酸洗後重金屬溶出百分率 73 圖4-10 不同KEX/Metal反應莫爾比條件下KEX去除第一階段反應灰酸洗溶出液中鋅離子效能 77 圖4-11 不同KEX/Metal反應莫爾比條件下KEX去除第一階段反應灰酸洗溶出液中重金屬離子之殘存濾液UV-vis光譜圖 79 圖4-12 不同KEX/Metal反應莫爾比條件下KEX去除第一階段反應灰酸洗溶出液所生成錯合物之IR光譜圖 81 圖4-13 不同KEX/Metal反應莫爾比條件下KEX去除第二階段反應灰酸洗溶出液中鋅、銅、鉛離子效能 84 圖4-14 不同KEX/Metal反應莫爾比條件下KEX去除第二階段反應灰酸洗溶出液中重金屬離子之殘存濾液UV-vis光譜圖 87 圖4-15 不同KEX/Metal反應莫爾比條件下KEX去除第二階段反應灰酸洗溶出液所生成錯合物之IR光譜圖 88 圖4-16 不同KBX/Metal反應莫爾比KBX條件下去除第一階段反應灰酸洗溶出液中鋅離子效能92 圖4-17 不同KBX/Metal反應莫爾比條件下KBX去除第一階段反應灰酸洗溶出液中重金屬離子之殘餘濾液UV-vis光譜圖 94 圖4-18 不同KBX/Metal莫爾比條件下KBX去除第一階段反應灰酸洗溶出液所生成錯合物之IR光譜圖 96 圖4-19 不同KBX/Metal反應莫爾比條件下KBX去除第二階段反應灰酸洗溶出液中鋅、銅、鉛離子效能 99 圖4-20 不同KBX/Metal反應莫爾比條件下KBX去除第二階段反應灰酸洗溶出液中重金屬離子之殘存濾液UV-vis光譜圖 101 圖4-21 不同KBX/Metal反應莫爾比條件下KBX去除第二階段反應灰酸洗溶出液所生成錯合物之IR光譜圖 103 圖4-22 不同金屬硫比條件下ISX去除第一階段反應灰酸洗溶出液中鋅離子效能 106 圖4-23 不同金屬硫比條件下ISX去除第一階段反應灰酸洗溶出液所生成錯合物之IR光譜圖 109 圖4-24 不同金屬硫比條件下ISX去除第二階段反應灰酸洗溶出液中鋅、銅、鉛離子效能 111 圖4-25 不同金屬硫比條件下ISX去除第二階段反應灰酸洗溶出液所生成錯合物之IR光譜圖 114

    Ackerman, P.K., Harris, G.H., Klimpel, R.R. and Aplan, F.F.. Evaluation of flotation collectors for copper sulfides and pyrite. Effect of xanthate chain length and branching. International Journal of Mineral Processing 21, 141-156, (1987).
    Bozkurt, V., Xu, Z. and Finch, J.A.. Effect of depressants on xanthate adsorption on pentlandite and pyrrhotite: Singal vs mixed minerals. Canadian Metallurgical Quarterly 38(2), 105-112, (1999).
    Bruggen, B.V.D, Vogels, G.,Herck, P.V. and Vandecasteele, C.. Simulation of acid washing of municipal solid waste incineration fly ash in order to remove heavy metals. Journal of Hazardous Materials 57,127-144, (1998).
    Chaudhari, S. and Tare, V.. Analysis and evaluation of heavy metal uptake and release by insoluble starch xanthate in aqueous environment. Water Science and Technology, 34(10), 161-168, (1996).
    Durlak, S.K.. Equilibrium analysis of the effect of the temoerature, moisture and sodium content on heavy metal emissions from municipal solid waste incinerator. Journal of Hazardous Materials, 56, 1-20, (1997).
    Eighmy, T.T., Eusden, J.D., Krzanowski, J.E. and et al..Comprehensive approach toward understanding element speciation and leaching behavior in municipal solid waste incineration electrostatic precipctator ash. Environmental Science & Technology, 29 (3),629, (1995)
    Fernandz, M.A., Martinez, L.,Segavra, M.,Garcia, J.C.and Espiell, F.. Behavior of heavy metals in the combustion gases of urban waste incinerators.Environ. Sci.Technol., 26 (5), 1040-1047, (1992).
    Greenberg, R.R., Zoller, W.H., and Grodon, G.E., Composition and size distributions of particles released in refuse incineration. Environmental Science and Technology 12(5), 566-573, (1978).
    Hamernik, J.D. and Frantz, G.C..Physical and chemical properties of municipal solid waste fly ash. ACI Materials Journal, 88 (3), 297, (1991).
    Hobo, T., Sudl, Y., Suzuki, S. and Araki, S. Batch and continous foam separation of copperious in water. Bunseki Kagaku.27, 104, (1978).
    Hovenkamp S. G. Sodium dithiocarbonate as a by-product in xanthating reactions, A contribution to the chemistry of viscose. Journal of Polymer Science:Part 2, 341-355, (1963).
    Jakob, A., Stucki, S.and Kuhn, P.. Evaporation of heavy metals during the heat treatment of municipal solid waste incinerator fly ash. Environ. Sci and Technol., 29,2429-2436, (1995).
    Jawed,M. and Tare,V..Application of starch xanthates for cadmium removal:acomparative evaluation.Journal of Applied Polymer Science,Vol.42,317-324, (1991).
    Jones, M.H. and Woodcock, J.T.. Ultraviolet spectrometry of flotation reagents with special reference to the determination of xanthate in flotation liquors. The institution of mining and metallurgy, (1973).
    Kakovsky, A.I..Proceedings of second international congress on surface activity. Butterworth, London, Vol.4, 225-238, (1957).
    Laajalehto, K., Leppinen, J., Kartio, I. and Laiho, T.. XPS and FTIR study of the influence of electro potential on activation of pyrite by copper or lead. Colloids and surfaces A: Physicochemical and engineering Aspects 154, 193-199, (1999).
    Leja, J.. Surface chemistry of froth flotation. Plenum Press, New York, (1982).
    Leppinen, J.O., Basilio, C.I. and Yoon, R.H.. In-situ FTIR study of ethyl xanthate adsorption on sulfide minerals under conditions of controlled potential. International Journal of Mineral Processing 26, 259-274, (1990).
    Marani, D., Mezzana, M., Passino, R. and Tiravanti, G.. Treatment of industrial effluents for heavy metal removal using the water soluble starch xanthate process. Proc. Int. Conf. Heavy metal in the environment, Amsterdam, 92-95, (1981).
    Mckinley, M.D., Warren, G.W., Lahoti, S.M. and Kandipati, K.. Stabilation and hydromentallurgical treatment of fly ash from a municipal incinerator. Journal of Hazardous Materials, 29, 255-273, (1992).
    Mielczarski, J.A., Cases, J.M., and Barres, O.. In situ infrared characterization of surface products of interaction of an aqueous xanthate solution with chalcopyrite, tetrahedrite, and tennantite. Journal of Colloid and Interface Science 178, 740-748, (1996).
    Mielczarski, J.A., Mielczarski, E. and Cases, J.M.. Infrared evaluation of composition and structure of ethyl xanthate monolayers produced on chalcopyrite, tetrahedrite, tennantite at controlled potentials. Journal of Colloid and Interface Science 188, 150-161, (1997).
    Nanjo, M. and Yamasaki, T.. Acid decomposition of metal xanthate complexes and their stability. Bulletin of the chemical society of Japan 42, 972-976, (1969).
    Ontiveros, J.T., Clapp, T.L. and Kosson, D.S.. Physical properties and chemical species distributions within municipal waste combuster ashes. Environment Progess 8(3), 200, (1989).
    Pastorek, R., Travnicek, Z., Sindelar, Z., Klicka, R. and Brezina, F.. Ethylxanthates and isopropylxanthates of nickel with triphenylphosphine as mixed π-acceptor ligand. Polyhedron 14 (12), 1615-1620. , (1995)
    Poling, G.W. and Leja, J.. Infrared study of xanthate adsorption on vacuum deposited films of lead sulfide and metallic copper under conditions of controlled oxidation. Journal of Physical Chemistry 67, 2121-2126, (1963).
    Pomianowski, A. and Leja, J..Spectrophotometric study of xanthate and dixanthogen solution .Can. J. Chem. 41, 2219-2230, (1963).
    Rao, S.R.. Xanthate and related compounds. Marcel Dekker, New York, (1971).
    Reid, E.E.. Organic chemistry of bivalent sulphur, New York. Chem. Publishing Co. 4, (1962).
    Sahibed-Dine, A., Aboulayt, A., Bensitel, M., Mohammed Saad, A.B., Daturi, M., Lavalley, J.C.. IR study of CS2 adsorption on metal oxides: relation with their surface oxygen basicity and mobility. Journal of Molecular Catalysis A: Chemical 162(1-2), 125-134, (2000).
    Schaum, K., Ziedler, P. and Wagner, E.. Hydrolysis and dissociation of xanthate. Kolloid-z, 65, 264, (1933).
    Sheikh, N. and Leja, I..Precipitation and stability of copper ethyl xanthate in hot acid and alkaline solutions. J. Coll. And Inter. Sci. 47, 300, (1974).
    Sparrow, G., Pomianowski, A. and Leja, I.. Soluble copper xantate complexes. Speration science 12, 87-102, (1977).
    Srinivasan, V. and Subbaiyan, M.. Electroflotation studies on Cu,Ni,Zn and Cd with ammonium dodecyl dithiocarbamate. Separation science and technology, 24(1-2), 145-150, (1989).
    Stalidis, G.A., Matis, K.A. and Lazaridis, N.K.. Selective separation of Cu,Zn and As frome solution by flotation techniques. Separation science and technology, 24(1-2), 97-109, (1989).
    Stephane, H.R., Brienne, M.M., Bozkurt,V., Rao, S.R., Xu, Z.H., Butler, I.S. and Finch, J.A.. Infrared spectroscopic investigations of the stability of xanthate-mineral interaction products. Society for applied spectroscopy, 521-527, (1996).
    Stumm, W., Morgan, J.J.. Aquatic chemistry. John Wiley & Sons, INC, (1996).
    Sun, Z. and Forsling, W.. The degradation kinetics of ethyl-xanthate as a function of pH in aqueous solution. Minerals Engineering 10 (4), 389-400, (1997).
    Tare, V. and Chaudhari, S.. Evaluation of soluble and insoluble xanthate process for the removal of heavy metals from wastewaters. Water research 21(9), 1109-1118, (1987).
    Tare, V., Chaudhari, S. and Jawed, M.. Comparative evaluation of soluble and insoluble xanthate process for heavy metal removal from wastewaters. Water science and technology 26(1-2), 237-246, (1992).
    Wiles, C.C.. Municipal solid waste combustion ash: State-of-the- knowledge. Journal of Hazardous Materials. 47, 325-344, (1996).
    Wing, R.E., Doane, W.M. and Russel, C.R.. Insoluble starch xanthate: Use in heavy metal removal. Journal of applied polymer science 19(3), 847-854, (1975).
    Wing, R.E., Jasberg, B.K. and Navickis, L.L..Insoluble starch xanthate:Preparation, stabilization, scale-up and use. Staerke, 30 (5), 163-170, (1978).
    Wing, R.E., Swanson, C.L., Doane, W.M. and Russell, C.R.. Heavy metal removal with starch xanthate cartionic polymer complex. Journal Water Pollution Control Federation 46(8), 2043-2047, (1974).
    Winter, G.. Inorganic xanthates. Reviews. in inorganic chemistry 2, 253-342, (1980).
    Woods, R., Kim, D.S., Basilio, C.I. and Yoon, R-H.. A spectroelectrochemical study of chemisorption of ethyl xanthate on gold. Colloids and Surfaces A: Physicochemical and Engineering Aspects 94(1), 67-74, (1995).
    Youcai, Z., Lijie, S. and Guojian, L.. Chemical stabilization of MSW incinerator fly ashes. Journal of Hazardous Materials B95, 47-63, (2002).
    Zhang, L.,Zhang, L.,Zhang, B. and Hou, W.. Properties of improved insoluble starch xanthate. Huanjing huaxue, 7(1), 57-62, (1988).
    91年環境保護統計年報。
    王鯤生、江康鈺、葉宗智、林仕敏,「垃圾焚化灰渣重金屬物種分析與溶出特性之研究」,第十一屆廢棄物處理技術研討會,1996。
    王鯤生、林凱隆、白子易、黃尊謙、曾博瑜,「都市垃圾焚化飛灰熔渣粉體之水化模式探討」,第十六屆廢棄物處理技術研討會,2001。
    王鯤生、彭竟凱、江康鈺、劉愷,「垃圾焚化飛灰成形燒結處理特性之研究」,第十屆廢棄物處理技術研討會,1995。
    江康鈺、王鯤生、林仕敏、蔡啟昌,「廢棄物含氯量對焚化過程中重金屬物種形成影響之研究」,第十二屆廢棄物處理技術研討會,1997。
    江康鈺、王鯤生、蔡啟昌、張祇祥,「廢棄物焚化過程氯對重金屬之反應親和力與物種形成影響之研究」,第十三屆廢棄物處理技術研討會,1998。
    呂明和、張祖恩、溫添進,「電解泡沫浮除法去除水中重金屬之研究」,第十七屆廢水處理技術研討會,1992。
    呂明和、張祖恩,「電解泡沫浮除重金屬之離子競爭特性之研究」,第十九屆廢水處理技術研討會,1994。
    呂明和,「電解泡沫浮除重金屬反應機制之研究」,國立成功大學環境工程研究所博士論文,台灣台南,1994。
    李俊德、黃奕叡、黃國林、李文智,「都市垃圾焚化灰渣熱熔特性之研究」第十七屆廢棄物處理技術研討會,2002。
    呂鴻光、陳咸亨,「赴歐考察焚化廠底灰及飛灰處理設施報」,行政院環境保護署,2001。
    柯明賢,「黃酸銅與二硫代胺基甲酸銅錯合物之溶出機制與穩定特性」,國立成功大學環境工程研究所博士論文,台灣台南,2000。
    高思懷、王鯤生、謝政峰、吳慶龍,「焚化底灰再利用於燒製紅磚可行性之探討」,第十五屆廢棄物處理技術研討會,2000。
    高思懷、林家禾,「垃圾焚化飛灰中無機鹽對重金屬溶出之影響」,第十屆廢棄物處理技術研討會,1995。
    高思懷、蘇許文、林家禾,「垃圾焚化飛灰萃取特性探討」,第十六屆廢棄物處理技術研討會,2001。
    張乃斌,「垃圾焚化廠系統工程規劃與設計」,茂昌圖書有限公司,1998。
    張坤森、陳登福、王偉盛、林維俊、鍾德龍、鄭百伶,「酸液及超音波對垃圾焚化廠飛灰重金屬移除之影響研究」,第十六屆廢棄物處理技術研討會,2001。
    張益國,「黃酸鹽程序去除銅離子及其生成物之穩定性」,國立成功大學環境工程研究所博士論文,台灣台南,2003。
    陳燕雪,「正丁基黃酸鹽穩定化銅、鎳及鋅氫氧化物污泥之研究」,國立成功大學環境工程研究所碩士論文,台灣台南,1999。
    陳元昊,「經前處理焚化飛灰作為水泥攙和料之研究」,國立成功大學環境工程研究所碩士論文,台灣台南,2003。
    賀孝庸,「有機化合物之光譜鑑別法」,眾光文化事業有限公司,1989。
    黃志傑,「正丁基黃酸鹽穩定銅、鋅離子之研究」,國立成功大學環境工程研究所碩士論文,台灣台南,2000。
    曾豐益,「垃圾焚化飛灰及灰渣中重金屬之濃度與分布的探討」,國立中央大學環境工程研究所碩士論文,台灣桃園,1994。
    楊金鐘、吳裕民,「垃圾焚化灰渣穩定化產物再利用之可行性探討」,一般廢棄物焚化灰渣資源化技術與實務研討會論文集,p.29,1996。
    楊金鐘、周順裕,「矽酸鹽添加劑對都市垃圾焚化飛灰穩定化產物重金屬溶出特性之影響」,第十二屆廢棄物處理技術研討會1997。
    楊金鐘、周順裕、許翠芳,「添加螯合劑對垃圾焚化飛灰固化體性能之影響初步探討」,第十一屆廢棄物處理技術研討會,1996。
    楊金鐘、蔡啟明,「垃圾焚化飛灰之萃取特性及電解回收其重金屬之可行性探討」,第十一屆廢棄物處理技術研討會,1996。
    楊萬發、陳清南、羅文林,「添家劑對都市垃圾焚化飛灰水泥固化體強度及重金屬溶出影響之研究」,第十六屆廢棄物處理技術研討會,2001。
    蔣立中、張朝森、蘇義斐、劉春香,「不同萃取劑對焚化飛灰重水萃取效果之探討」,第十五屆廢棄物處理技術研討會,2000。
    歐慧琪,「不溶性澱粉黃酸鹽螯合銅之溶出及電解回收研究」,碩國立成功大學環境工程研究所碩士論文,台灣台南,2002。
    魏銘琪、黃建迒、陳志成、魏銘彥,「焚化操作條件對底輝及飛灰中重金屬安定性之影響」,第十屆廢棄物處理技術研討會,1995。
    蘇偉凱、黃家俊、曾昭桓,「以管柱與批次試驗比較垃圾焚化灰中無機離子之溶出」,第十二屆廢棄物處理技術研討會,1997。
    顧順榮、鍾昀泰、張木彬,「台灣地區都市垃圾焚化灰分中重金屬濃度及TCLP溶出之評估」,第十屆廢棄物處理技術研討會,1995。

    下載圖示 校內:立即公開
    校外:2003-07-28公開
    QR CODE