| 研究生: |
尹子齊 Yin, tzu-chi |
|---|---|
| 論文名稱: |
量子除錯中克里福德群的分解 Decomposition for the Clifford Group in Quantum Error Correction |
| 指導教授: |
賴青瑞
Lai, Ching-Jui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 39 |
| 中文關鍵詞: | 量子計算 、量子除錯 、克里福德群 、辛幾何 |
| 外文關鍵詞: | Quantum computing, Quantum error correction, Clifford Group, Symplectic Geometry |
| 相關次數: | 點閱:62 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們利用了泡利群中的元素恰好具有兩個特徵空間,對應於特徵值±1這一事實。我們將+1特徵空間定義為程式碼空間。透過觀察量子態是否位於該程式碼子空間內,我們可以輕鬆驗證是否發生了錯誤。然而,一些運算符可能將量子狀態保留在程式碼空間內,但以不可糾正的方式改變狀態。這些算子是使用群論中的正規化子來定義的,其中克利福德群充當泡利群的正規化子。一個關鍵的結構定理指出,克利福德群與泡利群的商同構於 F2 上的辛群,其元素分解為橫對流的乘積,類似於正交群中的反射。
In error correction, stabilizer formalism is an encoding method that effectively protects against and corrects errors. This method takes advantage of the fact that elements in the Pauli group have exactly two eigenspaces, corresponding to eigenvalues of ±1. We define the +1 eigenspace as the code space. We can easily verify if an error has occurred by observing whether the quantum state resides within this code subspace. However, some operators may keep the quantum state within the code space but alter the state in a way that is not correctable. These operators are defined using the normalizer in group theory, where the Clifford group acts as the normalizer of the Pauli group. A crucial structural theorem states that the quotient of the Clifford group by the Pauli group is isomorphic to the symplectic group over F2, with its elements decomposing into products of transvections, analogs of reflections in the orthogonal group.
Kissinger, A., & van de Wetering, J. (2020, Aug). Reducing the number of non-clifford gates in quantum circuits. Phys. Rev. A, 102 , 022406. Retrieved from https://link.aps.org/doi/10.1103/PhysRevA.102.022406 doi: 10.1103/PhysRevA.102.022406
Nielsen, M. A., & Chuang, I. L. (2011). Quantum com-putation and quantum information: 10th anniversary edi-tion. Cambridge University Press. Retrieved from https://www.amazon.com/Quantum-Computation-Information-10th-Anniversary/dp/11070
O’Meara, O. (1978). Symplectic groups. Amer-ican Mathematical Society. Retrieved from https://books.google.com.tw/books?id=BWHyBwAAQBAJ
Pllaha, T., Volanto, K., & Tirkkonen, O. (2021). Decomposition of clifford gates. In 2021 ieee global communications conference (globecom) (p. 01-06). doi: 10.1109/GLOBECOM46510.2021.9685501
Rengaswamy, N., Calderbank, R., Pfister, H. D., & Kadhe, S. (2018, June). Synthesis of logical clifford operators via symplectic geometry. In 2018 ieee international symposium on information theory (isit). IEEE. Re-trieved from http://dx.doi.org/10.1109/ISIT.2018.8437652 doi: 10.1109/isit.2018.8437652