簡易檢索 / 詳目顯示

研究生: 吳彩如
Wu, Tsai-Ju
論文名稱: 晶圓凸塊產品組合最優化之遺傳基因演算法研究
The Optimization of Capacity Allocation Decision using Genetic Algorithm
指導教授: 黃悅民
Huang, Yueh-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 工程管理碩士在職專班
Engineering Management Graduate Program(on-the-job class)
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 68
中文關鍵詞: 遺傳演算法IC封裝投料分配
外文關鍵詞: capacity allocation, IC encapsulation, Genetic Algorithm
相關次數: 點閱:87下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前電子產品市場中,由於消費者對產品的期待越來越高,使得產品的生命週期不斷的縮短。以手機為例,消費者希望手機不但要多功能,而且也要輕、薄、短、小。為因應這樣的趨勢,許多新興的製程被發展出來。封裝產業中的Bumping 製程就是其中一例。
    電子商品不斷的推陳出新,各品牌也ㄧ直在打價格戰。就製造的層面來看,生產線必須縮短製程,而且所有的機台必須可以有不同的變化,以應付市場上多樣少量的需求。對管理者而言,如何因應瞬息萬變的市場、少量多樣的訂單、以及龐大的市場需求是非常重要的課題。本研究主要在探討投料量的變化,客戶投料如何下單至生產線會有最大利潤,利用產品與機台的配合製造最大利潤是企業首要之務。
    本研究使用線性規劃(Linear Programming)得到目標式與限制式,並利用遺傳演算法(Genetic Algorithm)來求最佳解,在前面許多研究中,研究者大多利用線性規劃來解極大值與極小值,這種方式是沒有彈性的,而遺傳演算法可以讓解有不同的可能性,更能符合企業的需求。因此遺傳演算法可以靈活的運用在企業體上,以計算最大利潤與提升機台的使用效率。本研究發現遺傳演算法在產能配置方面比其他方法有較高的效率。

    Regarding to the current electronic products market, as the consumers are getting higher and higher expectation for the products, the life cycle of the products is getting shorter. Taking mobile phones as an example, what consumer concern is not only versatile but also lightweight. It is necessary to develop new processes in order to meet the above requirement. The bumping process of assembly was developed through such a demand.
    Electronic products keep up continuous innovation, and each brand gets into the price war. From the aspect of manufacturing, the process flow has to be shorten in the production lines. All of the machines have to be flexible to meet the small-quantity/diverse-product demand in the market. As a manager, he has to face the dynamic market, the orders that are amall-quantity/diverse-product, and the huge market demand. The purpose of this research is trying to find, based on the various loadings, how to place the order to the production line as well as the raw material cooperative with machine to make the maxima profit.
    This research applies linear programming to get the goal and constraint, and then looks for the best solution by Genetic Algorithm. Many previous studies used the linear programming method to find the maximum and minimum, but this approach is inflexible. The Genetic Algorithm has given different possibility to meet enterprise require, so it can be flexible used for calculate the maximum profit and enhance the machine efficient. As the result, it shows that the Genetic Algorithm has the higher performance for the capacity allocation.

    目錄 摘要 III Abstract IV 致謝 V 目錄 VI 表目錄 VIII 圖目錄 IX 第1章 緒論 1 1.1 研究背景與動機 …….1 1.2 研究方向與目的 1 1.3 研究範圍與限制 3 1.4 研究方法與步驟 4 第2章 文獻探討 6 2.1 半導體封裝環境介紹 6 2.2 Bumping 製程簡介 8 2.3 Bumping 接單模式與生產管理模式 11 2.3.1 Bumping 接單模式 11 2.3.2 Bumping生產管理模式 14 2.4 訂單分配 16 2.5 數學規劃模式 19 第3章 研究方法 22 3.1 問題定義與分析 22 3.2 基因演算法 23 3.3 研究範圍限制與假設 32 3.3.1 研究範圍限制 32 3.3.2 研究假設 33 3.4 Bumping廠派工系統 43 3.4.1 使用介面 44 3.4.2 管理介面 45 3.5 遺傳基因演算法求解最佳化 48 3.5.1 模式簡述 48 3.5.2 Bumping 廠之遺傳演算法應用於產能分配問題 49 第4章 研究結果與分析 52 4.1 基本資料收集 52 4.2 遺傳基因演算法解產能最優化 55 4.2.1 遺傳演算法試算結果 55 4.2.2 訂單上限結果比較 57 4.2.3 獲利實績比較 60 4.3 廠內套入運用 61 第5章 結論與未來方向 63 5.1 研究成果與結論 63 5.2 未來方向 64 表目錄 表2-1 台灣IC產業產值,資料來源:工研院IEK 7 表2-2 台灣IC測試業前五大廠商,資料來源:工研院IEK(2008/03) 8 表2-3 Bumping生產流程 13 表2-4 條列目標函數與限制式 19 表3-1 演算法比較表 28 表3-2 相關文獻之比較 29 表3-3 產品流程表 36 表3-4 J1產品7家客戶機台上每小時可生產的產品數量 37 表3-5 J2產品7家客戶機台上每小時可生產的產品數量 37 表3-6 J3產品8家客戶機台上每小時可生產的產品數量 37 表3-7 J4產品6家客戶機台上每小時可生產的產品數量 38 表3-8 機台作業時數表 38 表3-9 J1產品之利潤 39 表3-10 J2產品之利潤 39 表3-11 J3產品之利潤 39 表3-12 J4產品之利潤 40 表3-13 機台數與規劃時段產能 43 表4-1 Bumping廠產品分配 52 表4-2 機台利用時數 55 表4-3 遺傳演算法測試結果 56 表4-4 訂單上限之機台利用率 58 表4-5 實際訂單機台效率與利潤 59 圖目錄 圖1-1 客戶訂單投料流程 2 圖1-2 研究流程圖 5 圖2-1 台灣IC產業成長曲線圖 7 圖2-2 Bumping 加工晶圓圖 10 圖2-3 Bumping 製程流程圖 11 圖2-4 生產投料流程圖 12 圖2-5 生產規劃的三個層次 14 圖2-6 Bumping 生產線作業流程 16 圖2-7 生產作業控制的功能 17 圖3-1 交配示意圖 25 圖3-2 突變示意圖 25 圖3-3 基因演算法流程示意圖 27 圖3-4 製程流程圖 33 圖3-5 產品組合問題架構圖 34 圖3-6 工廠派工管理系統 44 圖3-7 Bumping廠系統中的管理介面,也是屬於管理者的設定介面 46 圖3-8 Bumping 廠派工功能設定 46 圖3-9 訂單數量二進位編碼方式 49 圖4-1 遺傳演算法程式介面 53 圖4-2 比對結果 57

    參考文獻
    [1] 田長模,1982,「生產系統與管理」,永大書局。
    [2] 林政達,1998,「晶圓代工廠在二種生產週期時間限制下的產能估算模式」,碩士論文,交通大學。
    [3] 林聰明,2000,「多模糊目標下之整體生產規劃」,工業工程學刊第19期。
    [4] 林豐隆,2004,「生產與服務作業管理」,揚智文化出版。
    [5] 周鵬程,2005,「遺傳演算法原理與應用-活用Matlab」,全華圖書股份有限公司,三版。
    [6] 施永森,2005,「生產技術不確定下最適投料決策之研究」,碩士論文,屏東科技大學。
    [7] 洪ㄧ鋒,1995,「半導體製造業訂單管理與生產計劃之演算法」,碩士論文,交通大學。
    [8] 高敏純,2004,「成衣業全球運籌管理訂單分配決策支援系統之研究」,碩士論文,台北科技大學。
    [9] 凌繼遠,2006,「半導體產業多階多廠產能分配機制之建構」,碩士論文,交通大學。
    [10] 陳建宇,林我聰,2005,「基因演算法結合禁忌搜尋法求解多廠區訂單分配問題」資訊管理學術與實務研討會論文集2006/05, p.254~257。
    [11] 黃士芬,1990,「遺傳演算法應用於模糊需求之經濟批量排程問題」,碩士論文,東海大學。
    [12] 黃信榮,2000,「記憶體IC最終測試廠主生產規劃系統之建構」,碩士論文,交通大學。
    [13] 黃維民,2006,「產品產能最佳化配置之線性規劃研究-漆包線產品之應用」,碩士論文,成功大學。
    [14] 郭照坤,1984,「生產計劃與管制」,三民書局出版,三版。
    [15] 林慈傑,2002,「以遺傳演算法求解類運輸問題模式化的多廠訂單分配問題」,碩士論文,台灣大學。
    [16] 達爾文,1999,「物種原始」,台灣商務。
    [17] 劉水深,1984,「生產管理-系統方法」,華泰文化,四版。
    [18] 劉賓陽,2000,「作業研究」,三民書局出版。
    [19] 蔡政峰,2000,「求解有限資源專案牌成問題最佳化之研究-以基因演算法求解」,碩士論文,成功大學。
    [20] 蔡瑜明,2002,「半導體後段IC封裝最適排程之研究-禁忌搜尋法之應用」,碩士論文,中山大學。
    [21] 賴士葆,1991,「生產與作業管理-理論與實務」,華泰書A局出版,三版。
    [22] 賴士葆,1992,「生產/作業管理-經驗與個案」,華泰書局出版,二板。
    [23] 謝坤霖,2005,沈進成,周君研,鄭丞君,「基因演算法應用於顧客旅遊路徑最適化模式之研究」,旅遊管理研究,第四卷第一期,P53~P66。
    [24] IT IS智網,http://www.itis.org.tw/index.jsp
    [25] Bagley, J. D. , 1967,”The behavior of adaptive systems which employ genetic and correlation algorithms”,Dissertation Abstracts International, Vol.28, No.12, 5106B。
    [26] De Jong, K. A. ,1975, “An Analysis of the Behavior of a Class of Genetic Adaptive Systems”PH.D. Dissertation, University of Michigan, Ann Arbor.。
    [27] Finch , Byron J. ,2003,”Operations Now. Com:Process , Value and Profitability”
    New York , NY:McGraw Hill。
    [28] Goldberg D. ,1989,”Genetic Algorithm in Search , Optimization and Machine Learning”, Addision-Wesley , Reading , MA。
    [29] Guinet , A. ,2001,”Multi-site planning:A transshipment problem”International Journal of Production Economics, Vol.74, pp.21-32。
    [30] Heizer , Jay & Barry Render,2001,”Operation Management, 6th ed.”,Upper Saddle River , NJ:Prentice Hall。
    [31] Hendry and Kingsman ,1989,”Production Planning systems and their to make-to-order companies”,European Journal of Operation Research, Vol. 40,pp.1-15。
    [32] Hill , Terry,2000, “Manufacturing Strategy:Text and Case , 3rd ed.”,New York, NY:McGraw Hill。
    [33] Holland , J.H. ,1975,”Adaptation in natural and artificial systems”,The University Michigan Press, Ann Arbor。
    [34] Linus , Schrage,1986,”Linear , Integer and Quadrtal Programming With LINDO”,third edition。
    [35] Moore , Franklin , and Thomas E. Hendrick. ,1985,”Production/Operations Management. 9th ed.”,Homewood , IL:Richard D. Irwin。
    [36] Muhlenbein, H. ,1989,”Parallel genetic algorithms, population genetics and combinatorial optimization, In Proceedings of the Third International Conference on Genetic Algorithms”,Morgan Kaufmann Publishers, San Mateo, CA, pp.416~421。
    [37] Nahmias , Steven,2001,”Production and Operations Analysis 4th ed.”New York, NY:McGraw Hill。
    [38] Strayer , James K. ,1989,”Linear Programming and Its Applications”,Springer Verlag。
    [39] Vollmann , Thomas E.,William L. Berry , and D. Clay Whybark. ,1997,
    ”Manufacturing Planning and Control Systems. 4th ed.”,Burr Ridge , IL:Richard D. Irwin。
    [40] William J. Stevenson,2005,”Operations management,8e.”,New York, NY:McGraw Hill。
    [41] Yen-Zen Wang,2003,”Using Genetic algorithm methods to solve course scheduling problems”,Expert Systems With Application Vol.25 , pp.39~50。

    下載圖示 校內:2009-08-13公開
    校外:2010-08-13公開
    QR CODE