| 研究生: |
張志成 Chang, Chih-Cheng |
|---|---|
| 論文名稱: |
共軛高分子之排列有序性對其楊氏模數之響應 Investigating the Response of Alignment Order on the Young's Modulus in Conjugated Polymers |
| 指導教授: |
徐邦昱
Hsu, Bang-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 聚(3-己烷噻吩) 、自組裝單分子層 、機械強度 |
| 外文關鍵詞: | Poly(3-hexylthiophene), self-assembled monolayers, mechanical strength |
| 相關次數: | 點閱:70 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
共軛導電高分子最大的優勢在於其優秀的機械變形能力(Mechanical deformability),讓這些可拉伸的材料在軟性電子學及穿戴型裝置等領域有著廣泛的應用潛力。然而,也因為高分子可撓的特性,造成其薄膜形貌及高分子鏈排列有序性難以控制,導致元件內載子傳輸效率低,且難以評估元件之機械強度。為提升軟性電子元件的效能及耐用度,需系統性控制薄膜有序性的高低,找出元件電性表現及機械強度的平衡點,以實現高機械變形及電子效能共存的優異可撓式元件。
前人研究已知高分子鏈有序排列與基板間的作用力高度相關37-39,即高分子側鏈與修飾的自組裝單分子層必須匹配,因此在本研究中,透過半定量方法調控基板上自組裝單分子層表面能,調整高分子與自組裝分子間作用力的匹配程度,達到控制微觀尺度下高分子鏈的排列有序性高低,並使用原子力顯微鏡中之峰力定量機械特性模式,分析不同高分子薄膜排列有序性的楊氏模數響應,得出薄膜內部晶粒排列隨有序性提高、晶粒內部高分子鏈排列更加緊密下,楊氏模數會升高,與模型預測相符。
本實驗成功以半定量法控制單分子層表面能,達到調控高分子之排列有序性高低,並以彈簧原理釐清高分子排列有序性及其薄膜微觀結構之楊氏模數間的關係,為研究者提供設計有機軟性電子元件的重要資訊,以實現高可撓性及高效能並存的實用元件。
Conductive polymers' standout advantage is their remarkable deformability, which plays a crucial role for flexible electronics. However, the polymer chain’s flexibility also hampers the processed films to form ordered morphology with high electronic performance, leading to tremendous challenges from low mobility and unreliable mechanical strength. To enhance a flexible electronic device's lifetime and performance, balancing electronic performance and mechanical strength is a vital step. Employing a semi-quantitative method to match the interactions between polymer chains and self-assembled monolayer (SAM), this study successfully manipulates the surface energy to adjust polymer chain alignment. Using atomic force microscopy to analyzes Young's modulus response, the observations revealing that ordering level significantly impact modulus values. Systematic manipulation on surface energy achieves a controllable polymer chain alignment and mechanical responses, shedding light on controlling polymer chain ordering and Young's modulus. These findings provide profound insights for designing flexible electronic devices with enhanced performance.
[1] Elsenbaumer, R. L., Jen, K. Y., & Oboodi, R. (1986). Processible and environmentally stable conducting polymers. Synthetic Metals, 15(2-3), 169-174.
[2] Loewe, R.S.; Ewbank, P.C.; Liu, J.; Zhai, A.L.; McCullough, R.D. Regioregular, Head-to-Tail Coupled Poly(3-alkyl thiophene) Made Easy by the GRIM Method: Investigation of the Reaction and the Origin of Regioselectivity. Macromolecules 2001, 34, 4324–4333.
[3] Sista, P., & Luscombe, C. K. (2014). Progress in the synthesis of poly (3-hexylthiophene). P3HT Revisited – From Molecular Scale to Solar Cell Devices, 1–38.
[4] Kim, J. S., Kim, J. H., Lee, W., Yu, H., Kim, H. J., Song, I., ... & Kim, B. J. (2015). Tuning mechanical and optoelectrical properties of poly (3-hexylthiophene) through systematic regioregularity control. Macromolecules, 48(13), 4339-4346.
[5] Rivnay, J., Mannsfeld, S. C., Miller, C. E., Salleo, A., & Toney, M. F. (2012). Quantitative determination of organic semiconductor microstructure from the molecular to device scale. Chemical Reviews, 112(10), 5488–5519
[6]. Jin, S.-M., Hwang, J. H., Lim, J. A., & Lee, E. (2022). Precrystalline P3HT nanowires: Growth-controllable solution processing and effective molecular packing transfer to thin film. CrystEngComm, 24(6), 1248–1257.
[7] Persson, N. E., Chu, P.-H., McBride, M., Grover, M., & Reichmanis, E. (2017). Nucleation, growth, and alignment of poly(3-hexylthiophene) nanofibers for high-performance OFETs. Accounts of Chemical Research, 50(4), 932–942.
[8] Watcharinyanon, S. Structure of Self-Assembled Monolayers on Gold Studied by NEXAFS and Photoelectron Spectroscopy. Karlstads universitet, 2008.
[9] Sagiv, J. (1980). Organized monolayers by adsorption. 1. formation and structure of oleophobic mixed monolayers on solid surfaces. Journal of the American Chemical Society, 102(1), 92–98.
[10] Singh, M., Kaur, N., & Comini, E. (2020). The role of self-assembled monolayers in electronic devices. Journal of Materials Chemistry C, 8(12), 3938–3955.
[11] Ovanesyan, R. A., Filatova, E. A., Elliott, S. D., Hausmann, D. M., Smith, D. C., & Agarwal, S. (2019). Atomic layer deposition of silicon-based dielectrics for semiconductor manufacturing: Current status and future outlook. Journal of Vacuum Science & Technology A, 37(6), 060904.
[12] Aswal, D. K., Lenfant, S., Guerin, D., Yakhmi, J. V., & Vuillaume, D. (2006). Self assembled monolayers on silicon for Molecular Electronics. Analytica Chimica Acta, 568(1-2), 84–108.
[13] Yi, R., Mao, Y., Shen, Y., & Chen, L. (2021). Self-assembled monolayers for batteries. Journal of the American Chemical Society, 143(33), 12897–12912.
[14] Singh, M., Kaur, N., & Comini, E. (2020). The role of self-assembled monolayers in electronic devices. Journal of Materials Chemistry C, 8(12), 3938–3955.
[15]. Peroulis, D., Waghmare, P. R., Mitra, S. K., Manakasettharn, S., Taylor, J. A., Krupenkin, T. N., Zhu, W., Nessim, G. D., Marano, F., Guadagnini, R., Rodrigues-Lima, F., Dupret, J.-M., Baeza-Squiban, A., Boland, S., Park, J. Y., Oh, S., Madou, M., Yap, Y. K., Aslan, B., … Wannemacher, R. (2012). Charge transport in self-assembled monolayers. Encyclopedia of Nanotechnology, 411–417.
[16] Castillo, J. M., Klos, M., Jacobs, K., Horsch, M., & Hasse, H. (2015). Characterization of alkylsilane self-assembled monolayers by molecular simulation. Langmuir, 31(9), 2630-2638.
[17] Kim, Y., Kwon, Y. J., Ryu, S., Lee, C. J., & Lee, J. U. (2020). Preparation of nanocomposite-based high performance organic field effect transistor via solution floating method and mechanical property evaluation. Polymers, 12(5), 1046.
[18] Chen, J.-Y., Hsieh, H.-C., Chiu, Y.-C., Lee, W.-Y., Hung, C.-C., Chueh, C.-C., & Chen, W.-C. (2020). Electrospinning-induced elastomeric properties of conjugated polymers for extremely stretchable nanofibers and rubbery optoelectronics. Journal of Materials Chemistry C, 8(3), 873–882.
[19] Comanns, P. (2018). Passive water collection with the integument: Mechanisms and their biomimetic potential. Journal of Experimental Biology, 221(10).
[20] Ferraro, J. R., & Nakamoto, K. (2012). Introductory raman spectroscopy. Elsevier Science.
[21] Li, J., Xue, M., Xue, N., Li, H., Zhang, L., Ren, Z., Yan, S., & Sun, X. (2019). Highly anisotropic P3HT film fabricated via epitaxy on an oriented polyethylene film and Solvent Vapor treatment. Langmuir, 35(24), 7841–7847. [22]
[23] Qu, S., Yao, Q., Wang, L., Chen, Z., Xu, K., Zeng, H., Shi, W., Zhang, T., Uher, C., & Chen, L. (2016). Highly anisotropic P3HT films with enhanced thermoelectric performance via Organic Small Molecule Epitaxy. NPG Asia Materials, 8(7).
[24] Smallman, R. E. (2016). Modern Physical Metallurgy. Elsevier Science & Technology.
[25] Chu, J.-Y., Hsu, W.-S., Liu, W.-R., Lin, H.-M., Cheng, H.-M., & Lin, L.-J. (2012). A novel inspection for deformation phenomenon of reduced-graphene oxide via quantitative nano-mechanical atomic force microscopy. Procedia Engineering, 36, 571–577.
[26] 布鲁克中国客户服务中心 (2015). Dimension Icon 中文操作手册 (第四版).
[27] Chyasnavichyus, M., Young, S. L., & Tsukruk, V. V. (2014). Probing of polymer surfaces in the viscoelastic regime. Langmuir, 30(35), 10566–10582.
[28] Arevalo, S. E., Ebenstein, D. M., & Pruitt, L. A. (2022). A methodological framework for nanomechanical characterization of soft biomaterials and polymers. Journal of the Mechanical Behavior of Biomedical Materials, 134, 105384.
[29] Grierson, D. S., Flater, E. E., & Carpick, R. W. (2005). Accounting for the JKR–DMT transition in adhesion and friction measurements with atomic force microscopy. Journal of Adhesion Science and Technology, 19(3–5), 291–311.
[30] Maugis, D. (1992). Adhesion of spheres: The JKR-DMT transition using a dugdale model. Journal of Colloid and Interface Science, 150(1), 243–269.
[31] Nguyen, L. T. P., & Liu, B. H. (2022). Machine Learning Approach for reducing uncertainty in AFM nanomechanical measurements through selection of appropriate contact model. European Journal of Mechanics - A/Solids, 94, 104579.
[32] Ito, Y., Virkar, A. A., Mannsfeld, S., Oh, J. H., Toney, M., Locklin, J., & Bao, Z. (2009). Crystalline ultrasmooth self-assembled monolayers of alkylsilanes for organic field-effect transistors. Journal of the American Chemical Society, 131(26), 9396-9404.
[33] Material: Silicon (SI), bulk. (n.d.). https://www.memsnet.org/material/siliconsibulk/
[34] 賴昱穎. 建立奈米拉力計與分子模型解析單分子層與半導體高分子薄膜之介面作用力.國立成功大學,2022.
[35] Hopcroft, M. A., Nix, W. D., & Kenny, T. W. (2010). What is the Young's Modulus of Silicon?. Journal of microelectromechanical systems, 19(2), 229-238.
[36] ZHAO, Bingxiao; ZIKRY, M. A. The effects of structural disorders and microstructural mechanisms on semi-crystalline P3HT behavior. Polymer, 2015, 57: 1-11. [37]
[37] Kline, R. J., DeLongchamp, D. M., Fischer, D. A., Lin, E. K., Heeney, M., McCulloch, I., & Toney, M. F. (2007). Significant dependence of morphology and charge carrier mobility on substrate surface chemistry in high performance polythiophene semiconductor films. Applied Physics Letters, 90(6).
[38] Joseph Kline, R., McGehee, M. D., & Toney, M. F. (2006). Highly oriented crystals at the buried interface in polythiophene thin-film transistors. Nature Materials, 5(3), 222-228.
[39] Lee, W. H., Cho, J. H., & Cho, K. (2010). Control of mesoscale and nanoscale ordering of organic semiconductors at the gate dielectric/semiconductor interface for organic transistors. Journal of Materials Chemistry, 20(13), 2549-2561.
校內:2028-08-26公開