簡易檢索 / 詳目顯示

研究生: 劉延益
Liu, Yen-I
論文名稱: 外流場對二維向量噴嘴流場及出口推力影響之模擬分析研究
Simulation Analyses on the Influences of the External Flow on the Internal Flow and the Thrust of Two-Dimensional Thrust-Vectoring Nozzles
指導教授: 江滄柳
Jiang, Tsung-Leo
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 81
中文關鍵詞: 二維噴嘴推力向量動態模擬效能分析
外文關鍵詞: 2D Nozzle, Thrust Vectoring, Dynamic Simulation, Performance Analysis
相關次數: 點閱:98下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今飛行器為了取得高性能之優勢,向量噴嘴的研發是可行且良好的方法,傳統在進行此類實驗時會因為噴嘴內部流體速度非常快,導致實驗測量技術上的困難,而本研究使用數值模擬之方式模擬二維向量噴嘴之動態內流場及外流場,以做為二維向量噴嘴之效能評估。本研究之數值模擬使用商用CFD軟體ANASYS FLUENT並採用SST k-ω紊流模式,並成功地建立動態網格模擬機制,且利用動態網格模擬機制進行出口推力變化之分析。由過往文獻實驗結果發現未考慮噴嘴外流場時,將低估噴嘴之出口壓力同時高估噴嘴之出口馬赫數。因此本研究進一步加入外流場,分析在平板擺動狀態下外流場對噴嘴內流場及推力之影響,由模擬結果發現,添加外流場的部分更貼近實際值,且整體推力效率趨勢也都符合實際情形,可知本研究之模擬方法具有一定之可靠度。本研究也為了瞭解向量噴嘴擺動時壁面受熱之情形,因此也加入了壁面熱傳之模擬研究,由模擬結果發現,其噴嘴壁面溫度會隨著內部速度變化而有不同之溫度分布,其導流板阻擋氣體的偏轉部分,會有局部的高溫現象,其溫度會接近原入口溫度。

    In this study, the internal and external flows of a 2D thrust-vectoring nozzle are analyzed through numerical evaluation. This research applies the commercial CFD software ANSYS FLUENT and adopts the SST k-ω turbulent model, thus developing the dynamic grid simulation mechanism that has been employed to analyze the flap’s thrust variations.

    The simulation results of a previous study indicated that without considering external flow, the pressure would be underestimated and the Mach number would be overestimated at the nozzle exit. Therefore, in the present research, the influences of external flow on internal flow and the thrust of the nozzle are investigated, especially with the swinging of the flaps. The results show that the predicted trend that the thrust decreases with the swinging of the flaps corresponds to the experimental data if the external flow is included in the whole simulation, leading to a certain extent of reliability and accuracy.

    To predict the wall temperature when the nozzle flaps are swinging, heat transfer in the nozzle wall is studied. The finding reveals that the nozzle wall exhibits different temperatures at different velocities. Moreover, the swinging flap that blocks the gas stream will have the local high temperature or a value close to the inlet high temperature.

    摘要 I SUMMARY III 致謝 X 目錄 XII 表目錄 XV 圖目錄 XVI 符號說明 XIX 第一章:導論 1 §1-1 前言 1 §1-2 文獻回顧 4 §1-3 研究動機及目的 12 第二章 數學與物理模式 15 §2-1 噴嘴特性 15 §2-2 基本假設 17 §2-3 氣相流場統御方程式 18 §2-4 固相之統御方程式 20 §2-5 紊流模型 20 §2-6 邊牆函數模式 23 §2-7 界面統御方程式 24 第三章 數值方法 26 §3-1 控制體積轉換之傳輸方程式 27 §3-2 SIMPLE運算法則 27 §3-3 鬆弛係數 29 §3-4 收斂標準 30 §3-5 動態網格模擬原理 30 §3-5-1動態網格守恆方程式 31 §3-5-2 動態網格更新方法 32 第四章 結果與討論 36 §4-1 增加外流場之向量噴嘴網格獨立測試 37 §4-2 本研究之向量噴嘴設計 39 §4-3 向量噴嘴穩態(未擺動)之流場模擬分析 44 §4-4 向量噴嘴暫態(Pitch 30度)之流場模擬分析 48 §4-5 向量噴嘴暫態(Yaw15度)之流場模擬分析 53 §4-6 向量噴嘴模擬值和實驗值之比對 58 §4-7 向量噴嘴加入壁面熱傳之模擬分析 64 第五章 結論與未來工作 71 參考文獻 74 附錄A-推力效率之定義 80

    【1】 R. Lioyd, “A Review of Thrust Vector Control System for Tactical Missile,”AIAA/SAE Conference Proceedings, pp.1-25, 1978.
    【2】 C. W. Alcorn, M. A. Croom, M. S. Francis, and H. Ross, “The X-31 Aircraft: Advances in Aircraft Agility and Performance,” Prog. Aerosp. Sci., Vol. 32, No. 4, pp. 377-413, 1996.
    【3】 王立杰,“俄製戰機超級機動性之探討”,空軍學術月刊, 第526期, pp.16-25, Sep. 2000.
    【4】 F. J. Capone, “Static Performance of Five Twin-Engine Non-Axisymmetric Nozzles with Vectoring and Reversing Capability,” AIAA TP-1224, May. 1978.
    【5】 S. Hollmeier, s. Kopp, O. Herrmann, and H. Rick,“Propulsion/Aircraft Integration of Hypersonic Vehicles with Active Thrust-Vectoring and Real-Time of Dynamic Engine Behavior,” Int. J. Turbo Jet Eng., Vol. 16, No. 4, pp207-221, 1999.
    【6】 R. J. Re and L. D. Leavitt, “Static Internal Performance Including Thrust Vectoring and Reversing of Two-Dimensional Convergent-Divergent Nozzles, ”NASA TP-2253, Feb. 1984.
    【7】 E. A. Bare and D. E. Reubush,“Static Internal Performance of a Two-Dimensional Convergent-Divergent Nozzle with Thrust Vectoring,”NASA TP-2721, July 1987.
    【8】 A. Bailey, L. L. Price and J. G. Pipes,“Effect of Ambient Pressure on Nozzle Centerline Flow Properties,”AIAA J., Vol. 23, No. 6, pp. 953, June 1985.
    【9】 S. C. Asbury, and Craig A. Hunter,“Effects of Convoluted Divergent Flap Contouring on the Performance of a Fixed-Geometry Nonaxisymmetric Exhaust Nozzle”Langley Research Center, Hampton, Virginia, 1999.
    【10】 J. G. Taylor,“Static Investigation of a Two-Dimensional Convergent-Divergent Exhaust Nozzle with Multiaxis Thrust-Vectoring Capability,”NASA TP-2973, Apr. 1990.
    【11】 李家崧,“小型渦輪噴射引擎二維向量推力噴嘴之設計與動態模型建立及應用在水平單擺之穩定分析與驗證”,機械與航太工程研究所, 中華大學, 碩士論文, 中華民國九十二年.
    【12】 J. R. Burley, and J. R. Carlson,“Circular-to-Rectangular Ducts for High-Aspect Ratio Nonaxisymmetric Nozzle,”AIAA-85-1346, July, 1985.
    【13】 林柏枝, 賴維祥,“轉接段設計研究”,中山科學研究院第一研究所, 計畫報告, 中華民國七十三年.
    【14】 鐘武錕,“以實驗方法探討圓形截面轉變為矩形截面之管流”,航空太空工程學系, 國立成功大學, 碩士論文, 1986.
    【15】 J. D. Flamm, K. A. Deere, M. L. Mason, B. L. Berrier, and S. K. Johnson,“Experimental Study of an Axisymmetric Duel Throat Fluidic Thrust Vectoring Nozzle for Supersonic Aircraft Application,”AIAA 2007-5084, Hampton, VA, USA, 2007.
    【16】 I. Daniel,“Thrust Vector Nozzle for Modern Military Aircraft,”NATO R&T ORGANZATION Symposium, 8th-11th, May, 2000.
    【17】 A. J. Saddington and K. Knowles,“A Review of Out-of-Ground-Effect Propulsion-Induced Interference on STOVL Aircraft,”Prog. Aerosp. Sci., Vol. 41, pp.175-191, 2005.
    【18】 J. W. Smolka, L. A. Walker, G. H. Johnson, G. S. Schkolnik, C. W. Berger, T. R. Conners, J. S. Orme, K. S. Shy, and C. B. Wood,“F-15 ACTIVE Flight Research Program,”Society of Experimental Test Pilots 40th Symposium Preceding, 1996.
    【19】 J. S. Orme, R. L. Sims,“Selected Performance Measurements of The F-15 ACTIVE Axisymmetric Thrust-Vectoring Nozzle,”The ISABE Annual Symposium, pp.166, Sep., 1999.
    【20】 N. Maarouf, M. Sellaml, M. Grignonl and A. Chpoun.“Thrust Vectoring through Fluid Injection in an Axisymmetrial Supersonic Nozzle:Theoretical and Computational Study,”Springer Berlin Heidelberg, 2009.
    【21】 S. P. Pao, and J. R. Carlson,“Computational Investigation of Circular-to-Rectangular Transition Duct,”Journal of Propulsion and Power, Vol. 10, No. 1, Jan-Feb, 1994.
    【22】 F. R. Menter,“Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications,”AIAA J., Vol.32, No.8, Aug., 1994.
    【23】 王文弘,“三維加高展弦比轉接段向量推力系統之性能與流場分析”, 航空太空工程學系, 國立成功大學, 碩士論文, 中華民國九十二年.
    【24】 鄭兆均,“二維向量化推力噴嘴之設計與流場分析”,航空太空工程學系, 國立成功大學, 碩士論文, 中華民國九十一年.
    【25】 湯于正,“二維向量噴嘴之動態模擬分析”,航空太空工程學系, 國立成功大學, 碩士論文, 中華民國一百零一年.
    【26】 周育丞, “二維向量噴嘴之流場及平板受力模擬分析研究”, 航空太空工程學系, 國立成功大學, 碩士論文, 中華民國一百零二年.
    【27】 X. Zhang,“Couple Simulation of Heat Transfer and Temperature of the Composite Rocket Nozzle Wall,”Aerospace Sci. and Tec., Vol. 15, pp.402-408, 2011.
    【28】 D. A. Stewart, D. B. Leiser, M. Smith, P. Kolodziej,“Thermal Response of Integral, Multicomponent Composite Thermal Protection Systems,”Journal of Spacecraft and Rocket, Vol. 23, pp.420-427, 1986.
    【29】 D. A. Kourtides,“Thermal Performance of composite Flexible Blanket Insulations for Hypersonic Aerospace Vehicles,”Composites Engineering, Vol. 3, pp.805-813, 1993.
    【30】 E. Bilgen, T. Yamane,“Conjugate Heat Transfer in Enclosure with Openings for Ventilation,”Heat and Mass Transfer, Vol. 40, pp.401-411, 2004.
    【31】 I. T. Zaharnah,“Entropy Analysis in Pips Flow Subjected to External Heating,”Entropy, Vol. 5, pp.391-403, 2003.
    【32】 B. L. Berrier and R. J. Re,“A Review of Thrust-Vectoring Technology Schemes for Fighter Aircraft,”AIAA pp.78-1023, July, 1978.
    【33】 吳望一, 流體力學, 狀元出版社, 1989.
    【34】 FLUENT 6.3, User Guide, FLUENT Incorporated, 2006.
    【35】 B. E. Launder, and D. B. Spalding,“The Numerical Computation of Turbulent Flows,”Computer Methods in Applied Mechanics and Engineering, pp.269-289, 1974.
    【36】 P. G. Hill, and C. R. Peterson,“Mechanics and Thermodynamics of Propulsion,”2nd Ed., Addison-Wesley, 1992.
    【37】 F. P. Incropera, D. P. Dewitt, T. L. Bergman, A. S. Lavine, “Fundamentals of Heat and Mass Transfer,”John Welly and Sons, Asia, pp. A-5, 2007.

    下載圖示 校內:2016-07-30公開
    校外:2016-07-30公開
    QR CODE