| 研究生: |
楊竣翔 Yang, Chun-hsiang |
|---|---|
| 論文名稱: |
以模版高分子 poly(AMPS-co-EGDMA) 螯合咪唑之質子傳導方式進行對膽紅素之電化學感測 Electrochemical sensing of bilirubin via proton conducting of the imprinted poly(AMPS-co-EGDMA) chelated with imidazole |
| 指導教授: |
許梅娟
Syu, Mei-Jywan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 分子模版高分子 、電化學感測 、膽紅素 、質子傳導高分子 |
| 外文關鍵詞: | molecularly imprinted polymer, bilirubin, electrochemical sensor, proton conducting polymer |
| 相關次數: | 點閱:114 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
膽紅素為人體血液之重要代謝物,而血液中之膽紅素濃度具有重要之臨床意義,血液中膽紅素濃度過高即表示肝臟功能出現異常。因此以分子模版高分子技術修飾於金電極表面,利用膽紅素進行氧化反應所產生之電流,成功製備出膽紅素之生物電化學感測器。
以AMPS (2-acrylamido-2-methylpropano-sulfonic acid) 螯合咪唑 (imidazole) 進行聚合反應後可使高分子材料兼具電子傳導與質子傳導之特性,可將膽紅素氧化所產生之質子傳導至高分子層外之溶液相,產生之電子則傳導至電極表面產生感應電流。因此於製備模版高分子電極時,選用AMPS螯合咪唑為功能性單體,選用交聯劑EGDMA (ethyl glycol dimethylacrylate) 進行自由基聚合,並加入模版分子膽紅素,形成模印膽紅素之imidazole-poly(AMPS-co-EGDMA)。
本文討論了多項製備過程之變因,包括有:聚合溫度與時間、交聯劑用量、聚合液體積等,亦討論感測之條件如:pH值與有機相之感測系統。尋找最佳製備條件時,以模版高分子電極之電化學感測為主,佐以SEM、AFM、FT-IR等定性儀器。於最佳製備條件下以SEM進行觀察,經修飾後之電極上可產生具多孔性之高分子薄膜,其膜厚約為3 m,AFM觀察之結果亦顯示MIP電極之表面粗糙度較高,高分子具較多之比表面積;利用FT-IR可觀察模版高分子內模印膽紅素之特徴吸收峰。
於電化學感測上,定電位I-t實驗結果顯示,MIP電極與NIP電極之膽紅素感測性比較可得約9.0之模印效果,且MIP電極對膽紅素之感測性可達約 3.6 A/cm2/mg/dL,電極之感測極限約為1.7 ppm,且電極不僅在pH=12.5之水溶液具最佳感測性,且於DMSO溶劑中亦可有效感測膽紅素濃度。此外,本實驗也進行以膽綠素為相似物之選擇性測試與膽紅素混合血清之干擾測試,選擇性測試實驗中MIP電極具有約3.1之選擇性,表現優於裸金電極與NIP電極;於血清干擾測試中,電極對膽紅素之感測性雖有下降,但仍可維持7.7左右之模印效果。
A bilirubin sensing electrode fabricated by molecularly imprinted polymer (MIP) has been successfully carried out. A functional monomer of 2-acrylamido-2-methylpropano-sulfonic acid (AMPS) chelated with imidazole was chosen because of their proton-electron conducting property and hydrogen-bond rich functional groups. A crosslinker ethyl glycol dimethylacrylate (EGDMA) was also added to strengthen the mechanical property of the polymer matrix. The molecularly imprinted imidazole-poly(AMPS-co-EGDMA) could generate specific cavities and better affinity to bilirubin. Bilirubin was thus attracted into the polymer matrix and the oxidation took place. The released protons could be transferred by imidazole to bulk solution phase and the electrons could be transferred to the gold surface. As a result, electrical signals could be detected.
The polymer surface morphology observation was done by SEM, AFM and FT-IR. From SEM and AFM, the MIP fabricated electrode could generate a porous polymer matrix and higher sensing surface area can be obtained. The film thickness was around 3 m. Different factors affecting the sensing as well as the imprinting effects were investigated. Under the optimal condition, an imprinted factor of 9.0 could be achieved. The sensitivity toward bilirubin was about 3.6 A/cm/mg/dL and the limit of detection is 1.7 ppm. A selectivity of 3.1 could be obtained in the biliverdin analogue test. Serum interference test were also done for further real sample detection. A fairly good imprinted factor of 7.7 could be gained. Therefore, the feasibility of the electrochemical detection of bilirubin caused from the proton-electron conducting mechanism via the imprinted imidazole-poly (AMPS-co-EGDMA) was confirmed.
[1] L.C. Jr. Clark, C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences, 102, 29-45, 1962
[2] B. Pejcic, R.D. Marco, Impedance spectroscopy over 35 years of electrochemical sensor optimization, Electrochemica Acta, 51, 6217-6229, 2006
[3] Y. Lei, W. Chen, A. Mulchandani, Microbial biosensors, Analytica Chimica Acta, 568, 200-210, 2006
[4] Z.A. Xu, X. Chen, S.J. Dong, Electrochemical biosensors based on advanced bioimmobilization matrices, Trends in Analytical Chemistry, 25(9) , 899-908, 2006
[5] L.G. Carrascosa, M. Moreno, M. Álvarez, L.M. Lechuga, Nanomechanical biosensors a new sensing tool, Trends in Analytical Chemistry, 25(3), 196-206, 2006
[6] P. Bergveld, Development of an ion-sensitive solid-state device for neurophysiological measurements, IEEE Transactions on Biomedical Engineering, 17, 70-71, 1970
[7] T. Ahuja, I.A. Mir, D. Kumar, Rajesh, Biomolecular immobilization on conducting polymers for biosensing applications, Biomaterials, 28, 791-805, 2007
[8] M. Gerard, A. Chaubey, B.D. Malhotra, Application of conducting polymers to biosensors, Biosensors and Bioelectronics, 17, 345-359, 2002
[9] Sadik, Bioafinity sensors based on conducting polymers - a short review, electroanalysis, 11(12) , 839-844, 1999
[10] B. Sellergren, L.I. Andersson, Application of imprinted synthetic polymers in binding assay development, Method, 22, 92-106, 2002
[11] K. Mosbach; O. Ramström, The emerging technique of molecular imprinting and its future impact on biotechnology, Bio/Technology, 14, 163-170, 1996
[12] K. Haupt, Molecularly imprinted polymers in analytical chemistry, Analyst, 126, 747-756, 2001
[13] G. Wulff, Enzyme-like catalysis by molecularly imprinted polymers, chemical reviews, 102(1), 1-27, 2002
[14] E. Caro, R.M. Marcé , F. Borrull, P.A.G. Cormack, D.C. Sherrington, Application of molecularly imprinted polymers to solid-phase extraction of compounds from environmental and biological samples, Trends in Analytical Chemistry, 25(2), 143-154, 2006
[15] C.C. Hwang, W.C. Lee, Chromatographic characteristics of cholesterol - imprinted polymers prepared by covalent and non-covalent imprinting methods, Journal of Chromatography A, 962, 69-78, 2002
[16] K. Haupt, K. Mosbach, Molecularly imprinted polymers and their use in biomimetic sensors, Chemical Reviews, 100, 2495-2504, 2000
[17] P.A.G. Cormack, A.Z. Elorza, Molecularly imprinted polymers - synthesis and characterization, Journal of Chromatography B, 804, 173-182, 2004
[18] F. Bonini, A. Bossi, A.P.F. Turner, S.A. Piletsky, Molecularly imprinted polymers for the recognition of proteins - The state of the art, Biosensors and Bioelectronics, 22, 1131-1137, 2007
[19] D.A. Spivak, Optimization, evaluation, and characterization of molecularly imprinted polymers, Advanced Drug Delivery Reviews, 57, 1779-1794, 2005
[20] S.T. Wei, M. Jakusch, B. Mizaikoff, Capturing molecules with templated materials - Analysis and rational design of molecularly imprinted polymers, Analytica Chimica Acta, 578, 50-58, 2006
[21] J.O. Mahony, K. Nolan, M.R. Smyth, B. Mizaikoff, Molecularly imprinted polymers - potential and challenges in analytical chemistry, Analytica Chimica Acta, 534, 31-39, 2005
[22] T.F. Takeuchi, J. Haginaka, Separation and sensing based on molecular recognition using molecularly imprinted polymers, Journal of Chromatography B, 728, 1-20, 1999
[23] T.F. Takeuchi, T.S. Mukawa, H.Y. Shinmori, Signaling molecularly imprinted polymers molecular recognition-based sensing materials, The Chemical Record, 5, 263-275, 2005
[24] M.C. Blanco-López, M.J. Lobo-Castañón, A.J. Miranda-Ordieres, P. Tuñón-Blanco, Electrochemical sensors based on molecularly imprinted polymers, Trends in Analytical Chemistry, 23(1), 36-48, 2004
[25] C.H. Weng, W.M. Yeh, K.C. Ho, G.B. Lee, A microfluidic system utilizing molecularly imprinted polymer films for amperometric detection of morphine, Sensors and Actuators B, 121, 576-582, 2007
[26] D. Lakshmi, B.B. Prasad, P.S. Sharma, Creatinine sensor based on a molecularly imprinted polymer-modified hanging mercury drop electrode, Talanta, 70, 272-280, 2006
[27] Anuradha Baghel, M. Boopathi, Beer Singh , Pratibha Pandey, T.H. Mahato, P.K. Gutch, K. Sekhar, Synthesis and characterization of metal ion imprinted nano-porous polymer for the selective recognition of copper, Biosensors and Bioelectronics, 22, 3326-3334, 2007
[28] K. Warriner, A. Namvar, Microbial imprinted polypyrrole-poly (3-methylthiophene) composite films for the detection of Bacillus endospores, Biosensors and Bioelectronics, 22, 2018-2024, 2007
[29] S. Sadeghi, F. Fathi, J. Abbasifar, Potentiometric sensing of levamisole hydrochloride based on molecularly imprinted polymer, Sensors and Actuators B, 122, 158-164, 2007
[30] J. Rick, T.C. Chou, Using protein templates to direct the formation of thin- film polymer surfaces, Biosensors and Bioelectronics, 22, 544-549, 2006
[31] L.M. Kindschy, E.C. Alocilja, A molecularly imprinted polymer on indium tin oxide and silicon, Biosensors and Bioelectronics, 20, 2163-2167, 2005
[32] C.Y. Li, C.F. Wang, C.H. Wang, S.S. Hu, Construction of a novel molecularly imprinted sensor for the determination of O,O-dimethyl-(2,4-dichlorophenoxyacetoxyl)(3’-nitrophenyl)methinephosphonate, Analytica Chimica Acta, 545, 122-128, 2005
[33] K.J. Wynne, Conducting polymers. A short review, Industrial and Engineering Chemistry Product Research and Development, 21, 23-28, 1982
[34] D.M. Ivory, G.G. Miller, J.M. Sowa, L.W. Shacklette, R.R. Chance, R.H. Baughman, Highly conducting chargetransfer complexes of poly(p-phenylene). Journal of Chemical Physics, 71, 1506-1507, 1979
[35] K.K. Kanazawa, A.F. Diaz, R.H. Geiss, W.D. Gill, J.F. Kwak, J.A. Logan, J.F. Rabolt, G.B. Street, ‘Organic Metals’: polypyrrole, a stable synthetic ‘metallic’ polymer, Chemical Communications, 854-855, 1979
[36] G. Tourillon, F. Garnier, Stability of conducting polythiophene and derivatives, Journal of the Electrochemical Society, 130, 2042-2044, 1983
[37] M.E. Vaschetto, A.P. Monkman, M. Springborg, First-principles studies of some conducting polymers: PPP, PPy, PPV, PPyV, and PANI, Journal of Molecular Structure (Theochem), 468, 181-191, 1999
[38] Z. Połtarzewski, W. Wieczorek, J. Przyłuski, V. Antonucci, Novel proton conducting composite electrolytes for application in methanol fuel cells, Solid State Ionics, 119, 301-304, 1999
[39] W. Münch, K.D. Kreuer, W. Silvestri, J. Maier, G. Seifert, The diffusion mechanism of an excess proton in imidazole molecule chains first results of an ab initio molecular dynamics study, Solid State Ionics, 145, 437-443, 2001
[40] J. Rozière, D.J. Jones, Non-fluorinated polymermaterials for proton exchangemembrane fuel cells, Annual Review of Materials Research, 33, 503-555, 2003
[41] M.F.H. Schuster, W.H. Meyer, Anhydrous proton-conducting polymers, Annual Review of Materials Research, 33, 233-261, 2003
[42] D.S. Reddy, M.J. Reddy, U.V.S. Rao, Proton conductor based on poly(ethylene oxide) complexed with tetra-methyl-ammonium bromide, Materials Science and Engineering B, 78, 59-62, 2000
[43] R. Tanaka, H. Yamamoto, A. Shono, K. Kubo, M. Sakurai, Proton conducting behavior in non-crosslinked and crosslinked polyethylenimine with excess phosphoric acid, Electrochemica Acta, 45, 1385-1389, 2000
[44] J. Grondin, D. Rodriguez, J.C. Lassègues, Proton conducting polymer electrolyte - The Nylon blends, Solid State Ionics, 77, 70-75, 1995
[45] H.T. Pu, W.H. Meyer, G. Wegner, Proton conductivity in acid-blended poly(4-vinylimidazole), Macromolecular Chemistry and Physics, 202, 1478-1482, 2002
[46] Q.F. Li, H.A. Hjuler, N.J. Bjerrum, Phosphoric acid doped polybenzimidazole membranes Physiochemical characterization and fuel cell applications, Journal of Applied Electrochemistry, 31, 773-779, 2001
[47] W.H. Meyer, A. Bozkurt, Proton-conducting poly(vinylpyrrolidon)- polyphosphoric acid blends, Journal of Polymer Science B, 39, 1987-1994, 2001
[48] V. Neburchilov, J. Martin, H.J. Wang, J.J. Zhang, A review of polymer electrolyte membranes for direct methanol fuel cells, Journal of Power Sources, 169, 221-238, 2007
[49] K.D. Kreuer, On the development of proton conducting materials for technological applications, Solid State Ionics, 97, 1-15, 1997
[50] D. Kumar, R.C. Sharma, Advances in conductive polymers, European Polymer Journal, 34(8), 1053-1060, 1998
[51] S. Cosnier, Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review, Biosensors and Bioelectronics, 14, 443-456, 1999
[52] K. Kohashi, Y. Date, M. Morita, Y. Tsuruta, Fluorescence reaction of bilirubin with zinc ion in dimethyl sulfoxide and its application to assay of total bilirubin in serum, Analytica Chimica Acta, 365, 177-182, 1998
[53] X. Wang, J.R. Chowdhury, N.R. Chowdhury, Bilirubin metabolism: Applied physiology, Current Paediatrics, 70-74, 2006
[54] F. Moussa, G. Kanoute, C. Herrenknecht, P. Levillain, F. Trivin, Electrochemical oxidation of bilirubin and biliverdin in dimethylsulfoxide, Analytical Chemistry, 60, 1179-1185, 1988
[55] J. Niu, S.J. Dong, Investigation on mechanisms for the electrooxidation of some bile pigments by spectroelectrochemistry, Electroanalysis, 6, 437-443, 1994
[56] J. Klemm, M.I. Prodromidis, M.I. Karayannis, An enzymic method for the determination of bilirubin using an oxygen electrode, Electroanalysis,12(4), 292-295, 2000
[57] H. Erdemi, A. Bozkurt, W.H. Meyer, PAMPSA–IM based proton conducting polymer electrolytes, Synthetic Metals, 143, 133-138, 2004
[58] M.F.H. Schuster, W.H. Meyer, M. Schuster, K.D. Kreuer, Toward a new type of anhydrous organic proton conductor based on immobilized imidazole, Chemistry of Materials, 16, 329-337, 2004
[59] F. Sevil, A. Bozkurt, Proton conducting polymer electrolytes on the basis of poly(vinylphosphonic acid) and imidazole, Journal of Physics and Chemistry of Solids, 65, 1659-1662, 2004
[60] W.H. Meyer, A. Bozkurt, Proton conducting blends of poly(4-vinylimidazole) with phosphoric acid, Solid State Ionics, 138, 259-265, 2001
校內:2027-06-01公開