簡易檢索 / 詳目顯示

研究生: 黃維誠
Huang, Wei-cheng
論文名稱: 在非對稱條件波動下風險值跳躍擴散模型之研究
Study of the Jump-Diffusion Model for the VaR under the Asymmetry of the Conditional Volatility
指導教授: 黃銘欽
Huang, Ming-chin
學位類別: 碩士
Master
系所名稱: 管理學院 - 統計學系
Department of Statistics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 59
中文關鍵詞: GJR GARCH模型風險值極值理論跳躍擴散隨機過程
外文關鍵詞: Extreme value theory, GJR GARCH model, VaR, Jump diffusion stochastic process
相關次數: 點閱:114下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 許多研究指出金融市場具有條件波動不對稱的特性,必須利用非對稱GARCH模型來捕捉此一現象,在眾多的非對稱GARCH模型中,以GJR GARCH模型表現較好。本研究比較結合GJR GARCH模型之跳躍擴散隨機過程與極值理論在台灣加權指數與美國S&P 500指數之風險值估算結果,實證指出在台灣加權指數之風險值估算,以跳躍擴散隨機過程結合GJR GARCH模型表現最佳;而在S&P 500指數之風險值估算上,以極值理論之廣義極值分配結合GJR GARCH模型有較好之結果。

    Many studies point out that the financial markets have characteristics of the asymmetry of the conditional volatility. The asymmetric GARCH models have been used to catch this phenomenon. The GJR GARCH model is the most used model for the asymmetry of the conditional volatility. This thesis studies the extreme value theory with the jump diffusion stochastic process that incorporates GJR GARCH model on the estimation of the VaR for the TWII and S&P 500 index and concludes that the jump diffusion stochastic process incorporating a GJR GARCH model has the best result on the estimation of the VaR for TWII. But for the S&P 500 index, the Generalized extreme value distribution incorporating a GJR GARCH model is more appropriate for the estimation of the VaR.

    目次 中文摘要 ………………………………………………………………I ABSTRACT ……………………………………………………………II 目錄 …………………………………………………………………III 表目錄 …………………………………………………………………V 圖目錄 ………………………………………………………………VI 第一章 緒論……………………………………………………………1 1.1 研究背景與動機 ……………………………………………1 1.2 研究目的 ……………………………………………………3 1.3 研究流程與架構 ……………………………………………4 第二章 文獻探討 ……………………………………………………5 第三章 研究方法 ……………………………………………………10 3.1 風險值 ……………………………………………………10 3.2 風險值估計法 ……………………………………………11 3.3 跳躍擴散隨機過程 ………………………………………25 3.4 時間序列模型 ……………………………………………29 3.5 回溯測試 …………………………………………………32 第四章 實證分析結果 ………………………………………………34 4.1 資料 ………………………………………………………34 4.2 區塊長度與超越門檻個數之選擇 ………………………38 4.3 未考慮條件異質變異數之風險值估計模型之比 ………41 4.4 考慮條件異質變異數之風險值估計模型之比較 ………45 第五章 結論與建議 …………………………………………………55 5.1 結論 ………………………………………………………55 5.2 建議 ………………………………………………………56 參考文獻 ……………………………………………………………57

    參考文獻
    1. Akgiray, V. and G. Booth, (1986), “Stock Price Processes with Discontinuous Time Paths: An Empirical Examination,” Financial Review, Vol. 21, pp.163-184.
    2. Black, F. and M. Scholes, (1973), “The Pricing of Options and Corporate Liabilities,” Journal of Political Economy, Vol.81, pp.637-659.
    3. Balkema, A. and de Haan. (1974), “Residual Life Time at Great Age,” Annals of Probability 2, pp.792-804.
    4. Bollerslev, T. (1986), “Generalized Autoregressive Conditional Heteroskedasticity,” Journal of Econometrics, 31, pp.307-327.
    5. Bali, T.G. (2003), “An Extreme Value Approach to Estimating Volatility and Value at Risk.” Journal of Business, Vol. 76(1), pp.83-108.
    6. Consigli, G. (2002), “Tail Estimation and Mean-VaR Portfolio Selection in Markets Subject to Financial Instability.” Journal of Banking and Finance, Vol. 26, pp.1355-1382.
    7. Duffie, D. and Pan, J. (1997), “An Overview of Value at Risk.” The Journal of Derivatives, Vol.4, Iss.3, pp.7-49.
    8. Diebold, F.X., Schuermann, T., and Stroughair, J.D. (1998), “Pitfalls and Opportunities in the Use of Extreme Value Theory in Risk Management,” Journal of Risk Finance, 1, pp.30-36.
    9. Engle, R.F., (1982), “Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflations,” Econometrica, 50, pp.987-1007.
    10. Engle, R. F, and V. Ng. (1993), “Measuring and Testing the Impact of News on Volatility,” Journal of Finance 45, pp.1749-1777.
    11. Fisher, R. and L. Tippett (1928), “Limiting Forms of the Frequency Distribution of the Largest or Smallest Member of a Sample,” Proceedings of the Cambirdge Philosophical Society, pp.180-190.
    12. Fama, E.F. (1965), “The Behavior of Stock Market Price,” Journal of Business, 38, pp.34-105.
    13. Glosten, L., R. Jagannathan, and D. Runkle. (1993), “On the Relation Between the Expected Value and the Volatility on the Nominal Excess Returns on Stocks,” Journal of Finance 48, pp.1779-1801.
    14. Hanson, F. B. andWestman, J. J. (2002), “Jump-Diffusion Stock Return Models in Finance: Stochastic Process Density with Uniform-Jump Amplitude,” Proc. 15th Int. Sympos. Mathematical Theory of Net-works and Systems, pp.1-7.
    15. Hanson, F. B. andWestman, J. J. (2002), “Portfolio Optimization with Jump-Diffusions: Estimation of Time-Dependent Parameters and Application,” Proc. 2002 Conf. Decision and Control, pp.377-382.
    16. Jenkinson, A.F. (1955), “The Frequency Distribution of the Annual Maximum(or minimum) Values of Meteorological elements,” Quarterly Journal of the Royal Meteorology Society, 87, pp.145-158.
    17. Jorion P. (1988), “On Jump Processes in the Foreign Exchange and Stock Markets.” The Review of Financial Studies; Vol.1(4), pp.427-.445.
    18. Longin, F.M. (2000), “From Value at Risk to Stress Testing: The Extreme Value Approach.” Journal of Banking and Finance, 24, pp.1097-1130.
    19. Longin, F. M. and Solnik, B. (2001), “Extreme Correlation of International Equity Marktes,” Journal of Finance, 2, pp.1-23.
    20. Mandelbrot, B. (1963), “The variation of certain speculative price.” Journal of Business, Vol.36, pp.394-419.
    21. Mises von, R. (1936), “La distribution de la plus grade de n valeurs,” Rev. Math. Union Interbalcanique 1, pp.141-160. Reproduced in Selected Papers of Richard von Mises, Amer. Math. Soc. 2 (1964), pp.271-294.
    22. Morgan, J. P. (1996), “Riskmetrics-Technical Manual.” fourth edition, New York.
    23. Merton, R. C. (1976), “Option Pricing When Underlying Stock Returns Are Discontinuous,” Journal of Financial Economics, Vol. 3, pp.125-144.
    24.McNeil, A.J. (1999), “Extreme Value Theory for Risk Managers” Departement Mathematik, ETH Z¨urich.
    25. McNeil, A. J. and Frey, R. (2000), “Estimation of Tail-related Risk Measures for Heteroscedastic Financial Time Series : An Extreme Value Approach,” Journal of Empirical Finance, 7, pp.271-300.
    26. Marrison, C. (2002), “The fundamentals of risk measurement.” McGraw Hill, pp.155-171.
    27. Pickands, J. (1975), “Statistical Inference Using Extreme Order Statistics,” The Annals of Statistics, 3, pp.119-131.

    下載圖示 校內:2011-07-13公開
    校外:2011-07-13公開
    QR CODE