簡易檢索 / 詳目顯示

研究生: 潘國興
Phan, Quoc-Hung
論文名稱: Stokes-Mueller矩陣偏振測量法用於生物感測上和分析薄膜的表面粗糙度中的光學和物理特性
Stokes-Mueller matrix polarimetry for biological sensing and characterization of optical/physical property of thin film with rough surface
指導教授: 羅裕龍
Lo, Yu-Lung
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 125
中文關鍵詞: 史托克穆勒矩陣偏光儀表面電漿共振氣體感測葡萄糖感測旋性二向色性旋性雙折射薄膜表面粗糙度。
外文關鍵詞: Stokes-Mueller matrix polarimetry, surface plasmon resonance, gas sensing, glucose sensing, circular dichroism, circular birefringence, thin film, rough surface
相關次數: 點閱:122下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 提出一種提高了生物感測的新方法-surface plasmon resonance(SPR)棱鏡耦合結合史托克 - 穆勒矩陣偏光法,耦合器在偏振光和史托克偏振方法(測量在六個有效橢圓參數的變化)下產生亮度,圓雙折射(CB)的值和圓二色性(CD)的值作為耦合器暴露在具有不同折射率的感測樣本下的結果。進行理論分析,檢測到的感測介質之有效橢圓參數、CB 、CD值中折射率的靈敏度。藉由比較實驗結果中的靈敏度與CB 、CD值中有效的橢偏參數來證明該方法的有效性。結果表明該技術的靈敏度分別為1x10-3和1x10-5 degree/RIU(折射率單位)在CB / CD / DOP為感測和氣體感測。結果表明該技術的分辨性分別為1x10-5和1x10-7 degree/RIU(折射率單位)在CB / CD / DOP為感測和氣體感測。在一般情況下,此研究的結果顯示所測量的有效-橢圓參數、CB、 CD值在於偏振掃描角度擁有高度的敏感性。因此,確認了偏振光掃描橢偏在高分辨率生物檢測的發展可能性。
    薄膜在粗糙表面上在物理和光學特性的應用中,使用分解去極化矩陣模型被提出來表徵各向異性薄膜具有粗糙表面的光學和物理性能。其折射率和薄膜的厚度是使用純極化逆矩陣求得,而膜的表面粗糙度是使用偏振矩陣來表示。所提出的有效性方法藉由比較實驗結果中薄膜的有效橢圓參數分析結果折射率和厚度。結果表明所提出的方法是提供了薄膜的細或粗糙表面的光學和物理特性的可靠手段。重要地,所提出的方法不僅能夠在一個非接觸式光學方式來確定薄膜樣品的粗糙表面的粗糙度,而且還提供了比大家所知的更有效介質近似(EMA)模型通用的方法,此方法被限制能表徵低表面粗糙度的樣品。

    A novel method for enhanced biological sensing is proposed based on a surface plasmon resonance (SPR) prism coupler and Stokes-Mueller matrix polarimetry technique. The coupler is illuminated with polarized light and a Stokes polarimetry approach is used to measure the change in effective ellipsometric parameters, circular birefringence (CB) values, circular dichroism (CD) values and depolarization (Dep.) as the coupler is exposed to sensing samples with different refractive indices. The theoretical analysis is performed to investigate the sensitivity of the effective ellipsometric parameters/CB/CD values to the refractive index of the detected sensing medium. The validity of the proposed method is confirmed by comparing the experimental results for the sensitivity of the effective-ellipsometric-parameters/CB/CD values with the analytical results. The results show that the sensitivity of the proposed technique was 1x10-3 degree/RIU (refractive index unit) and 1x10-5 degree/RIU for CB/CD/Dep. sensing and gas sensing, respectively. The resolutions of the proposed technique were 1x10-5 and 1x10-7 RIU for CB/CD/Dep. sensing and gas sensing, respectively. In generall, the results obtained in this study show that the measured effective-ellipsometric-parameters/CB/CD values are highly sensitive to the polarization scanning angle. Consequently, the potential of polarization scanning ellipsometry for high-resolution biological detection in confirmed.
    In addition, A Mueller matrix decomposition model with depolarization matrix is proposed to characterize the optical and physical properties of anisotropic thin films with rough surfaces. The refractive index and thickness of the thin film are inversely extracted using a pure polarization matrix, and the surface roughness of the film is characterized using a depolarization matrix. The validity of the proposed method is demonstrated by comparing the experimental results for the refractive index and thickness of a thin film with the analytical results obtained using the effective ellipsometric parameters of the film. The results show that the proposed method provides a reliable means of obtaining the optical and physical properties of thin films with fine or coarse rough surfaces. Importantly, the proposed method not only enables the coarse surface roughness of thin-film samples to be determined in a non-contact optical manner, but also provides a more versatile approach than the well-known effective medium approximation (EMA) model, which is restricted to the characterization of samples with low surface roughness.

    ABSTRACT I 中文摘要 III LIST OF FIGURE VIII LIST OF TABLE XIV CHAPTER 1 1 INTRODUCTION 1 1.1 Literature review of Stokes-Mueller matrix polarimetry measurement system 1 1.2 Literature review of Mueller matrix ellipsometry for characterization of properties of thin film with rough surface 6 1.3 Literature review of glucose sensing 8 1.4 Literature review of circular dichroism (CD) sensing 10 1.5 Literature review of surface plasmon resonance (SPR) sensing 12 1.6 Research motivation 15 CHAPTER 2 17 METHODOLOGY 17 2.1 Theory of Stokes-Mueller matrix polarimetry 17 2.2 Berreman 4x4 matrix method 21 CHAPTER 3 25 SURFACE PLASMON RESONANCE PRISM COUPLER FOR GAS SENSING 25 3.1 Stokes-Mueller matrix polarimetric for extracting effective ellipsometry parameters 25 3.2 Sensitivity of effective ellipsometry parameters to changes in the refractive index of sensed medium 29 3.3 Experimental set up and results 35 3.4 Conclusion 39 CHAPTER 4 41 STOKES-MUELLER MATRIX POLARIMETRY FOR GLUCOSE SENSING 41 4.1 Stokes-Mueller matrix polarimetry for extracting optical rotation angle of circular birefringence (CB) property 41 4.2 Experimental set up and results 43 4.2.1 Precision and accuracy of Stokes-Mueller matrix polarimetric system 43 4.2.2 Glucose concentration detection for aqueous solutions without scattering effects. 48 4.2.3 Glucose concentration detection for aqueous solutions with scattering effects 51 4.3 Conclusion 55 CHAPTER 5 56 SURFACE PLASMON RESONANCE PRISM COUPLER FOR ENHANCED CIRCULAR DICHROISM SENSING 56 5.1 SPR prism coupler 56 5.2 Analytical model for extracting CD properties 58 5.3 Validity of the analytical model 61 5.4 The sensitivity of CD measurement to chlorophyllin concentration 63 5.5 Experimental set up and results 68 5.6 Conclusion 73 CHAPTER 6 74 SCANNING ELLIPSOMETRY FOR CHARACTERIZING OPTICAL PROPERTIES OF TURBID MEDIA 74 6.1 Total internal reflection ellipsometry SPR prism coupler 74 6.2 Analytical model for extracting CB/CD properties 75 6.3 Validity of analytical model 77 6.4 Sensitivity of CD measurements to chlorophyllin concentration 78 6.5 Sensitivity of CB measurements to glucose concentration 79 6.6 Experimental setup and results 80 6.7 Conclusion 86 CHAPTER 7 88 CHARACTERIZATION OF PHYSICAL/OPTICAL PROPERTIES OF ANISOTROPIC THIN FILM WITH ROUGH SURFACES 88 7.1 Decomposition model of thin film with fine/coarse rough surface 88 7.2 The simulation results 94 7.3 Experimental set up and results 98 7.4 Conclusion 107 CHAPTER 8 108 CONCLUSION AND FUTURE WORK 108 8.1 Conclusion 108 8.2 Future works 108 REFERENCE 110 LIST OF JOURNAL PAPER 124 LIST OF CONFERENCE PAPER 125

    1. A. Bhandari, S. Stamnes, B. Hamre, O. Frette, K. Stamnes, and J. J. Stamnes, “Stokes scattering matrix for human skin,” Appl. Opt. 51, 7487-7497 (2012).
    2. S. Firdous, and M. Ikram, “Stokes polarimetry for the characterization of biomaterial using luquid crystal variable retarders,” Proc. SPIE 6632, 66320F (2012).
    3. K. Hassani and K. Abbaszadeh, “Thin film characterization with a simple Stokes ellipsometer,” Eur. J. Phys. 36, 025017 (2015).
    4. R. M. A. Azzam and N. M. Bashara, Ellipsometry and polarized light, North-Holland, Netherlands 1987.
    5. H. Tompkins and E. Irene, Handbook of ellipsometry, William Andrew, 2005.
    6. H. Fujiwara, Spectroscopic Ellipsometry: principle and application, Willey, England 2007.
    7. S. A. Hall, M. A. Hoyle, J. S. Post, and D. K. Hore, “Combined Stokes vector and Mueller matrix polarimetry for materials Characterization,” Anal. Chem. 85, 7813-7619 (2013).
    8. C. W. Sun, Y. S. Hsieh, Y. C. Ho, C. P. Jiang, C. C. Chuang, an S. Y. Lee, “Characterization of tooth structure and the dentin enamel zone based on the Stokes Mueller calculation,” J. Biomed. Opt. 17, 116026 (2012).
    9. N. Gosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissue,” J. Biophoton. 2, 145-156 (2009).
    10. Q. H. Phan and Y. L. Lo, “Surface plasmon resonance prism coupler for gas sensing based on Stokes polarimetry,” Sens. and Act. B 216, 247-254 (2015).
    11. N. Mazumder, J. J. Qiu, M. R. Foreman, C. M. Romero, C. W. Hu, H. R. Tsai, P. Torok, and F. J. Kao, “Polarization resolved second harmonic generation microscopy with a four channel Stokes polarimeter,” Opt. Exp. 20, 14090-14099 (2012).
    12. S. Alali and I. A. Vitkin, “Optimization of rapid Mueller matrix imaging of turbid media using four photoelastic modulators without mechanically moving parts,” Opt. Eng. 52, 103114 (2013).
    13. T. M. El-Agez, A. A. El-Tayyan, and S. A. Taya, “Rotating polarizer analyser scanning ellipsometry,” Thin Solids Films 518, 5610-5614 (2010).
    14. D. H. Goldstein, “Mueller matrix dual rotating retarder polarimeter,” Appl. Opt. 31, 6676-6683 (1992).
    15. R. M. A. Azzam, “A simple fourier photopolarimeter wit rotation polarizer and analyser for measuring Jones and Mueller matrices,” Opt. Commun. 25, 137-140 (1978).
    16. K. Dev and A. Asundi, “Mueller Stokes polarimetric characterization of transmissive liquid crystal spatial light moldulator,” Opt. Laser Eng. 50, 599-607 (2012).
    17. L. Bakshi, S. Eliezer, G. Appelbaun, N. Nissm, L. Perelmuter, and M. Mond, “A full Stokes vector ellipsometry measurement system for in situ diagnostics in dynamic experiments,” Rev. Sci. Instrum. 83, 053904 (2012).
    18. S. A. Hall, P. A. Covert, B. R. Blinn, S. Shakeri, and D. K. Hore, “Rapid and sensitive polarization measurement for characterizing protein absorption at the solid liquid interface,” J. Phys. Chem. C 117, 1796-1803 (2013).
    19. S. A. Hall, M. A. Hoyle, J. S. Post, and D. K. Hore, “Combined Stoke vectors and Mueller matrix Polarimetry for materials characterization,” Anal. Chem. 85, 7613-7619 (2013).
    20. L. M. S. Aas, P. G. Ellingsen, B. E. Fladmark, P. A. Letnes, and M. Kildemo, “Overdetermined broadband spectroscopic Mueller matrix polarimeter designed by genetic algorithms,” Opt. Exp. 21, 8753-8762 (2013).
    21. G. M. Ponce, C. Solano, and C. P. Barrios, “Hybrid complete Mueller polarimeter based on phase modulators,” Opt. Laser Eng. 49, 723-728 (2011).
    22. L. J. K. Cross and D. K. Hore, “Dual – modulator broadband infrared Mueller matrix ellipsometry,” Appl. Opt. 51, 5100-5110 (2012).
    23. R. C. Sanchez, R. A. M. Celorio, R. M. Cibrian, R. Salvador, D. H. Fusilier, and J. B. H. Ramos, “Synchronization of two photoelastic light modulators to obtain Mueller matrix,” IEEE Trans. Instrum. Meas. 62, 2050-2056 (2013).
    24. S. Alali and I. A. Vitkin, “Optimization of rapid Mueller matrix imaging of turbid media using four photoelastic modulators without mechanical moving parts,” Opt. Eng. 52, 103114 (2013).
    25. O. Arteaga, J. Freudenthal, B. Wang, and B. Kahr, “Mueller matrix polarimetry with four photoelastic modulators: theory and calibration,” Appl. Opt. 51, 6805-6817 (2012)
    26. K. Vedam, "Spectroscopy ellipsometry: a historical overview," Thin Solid Films 313-314, 1-9 (1998).
    27. R. M. A Azzam, N. M. Bashara, Ellipsometry and polarized light, North-Holland, 1987.
    28. D. D. Engelsen, "Ellipsometry of anisotropic film," J. Opt. Soc. Am. 61, 1461-1466 (1971).
    29. A. Malsi, R. Kalyanaraman, and H. Garcia, "From Mie to Fresnel through effective medium approximation with multipole contributions," J. Opt. 16, 065001 (2014).
    30. T. Yang, S. Goto, M. Kawata, K. Uchida, A. Niwa, and J. Gotoh, "Optical properties of Gan thin films on sapphire substrates characterized by variable angle spectroscopic ellipsometry," Jpn. J. Appl, Phys. 37, 1105-1108 (1998).
    31. H. Fujiwara, J. Koh, P. I. Rovira, and R. W. Collins, "Assessments of effective medium theories in the analysis of nucleation and microscopic surface roughness evolution for semiconductor thin films," Phys. Rev. B 61, 10832-10843 (2000).
    32. M. Erman, J. B. Theeten, P. Chambon, S. M. Kelso, and D. E. Aspnes, "Optical properties and damage analysis of GaAs single crystals partly amorphized by ion implantation," J. Appl. Phys. 56, 2664-2671 (1984).
    33. P. G. Snyder, J. A. Woollam, S. A. Alterovitz, and B. Johs, "Modeling Al¬¬x Ga1-x as optical constant as function of composition," J. Appl. Phys. 6, 5925-5926 (1990).
    34. R. H. Muller and J. C. Farmer, "Macroscopic optical model for the ellipsometry of an underpotential deposit: lead on copper and silver," Surf. Sci. 135, 521-531 (1983).
    35. J. C. Farmer and R. H. Muller, "Effect of Rhodamine-B on the electrodeposition of lead on copper," J. Electrochem. Soc. 132, 313-319 (1985).
    36. J. Qiu, W. J. Zhang, L. H. Liu, P. F. Hsu, and L. J. Liu, "Reflective properties of randomly rough surfaces under large incidence angles," J. Opt. Soc. Am. A 31, 1251-1258 (2014).
    37. D. Necas, I. Ohlidal, D. Franta, M. Ohlidal, V. Cudek, and J. Vodak, "Measurement of thickness distribution, optical constants, and roughness parameters of rough nonuniform Zn Se thin films," Appl. Opt. 53, 5606-5614 (2014).
    38. L. M. S. Aas, P. G. Ellingsen, B. E. Fladmark, P. A. Letnes, and M. Kildemo, "Overdeterminded broadband spectroscopic Mueller matrix polarimeter designed by genetic algorithms," Opt. Exp. 21, 8753-8761 (2013).
    39. O. Svensen, M. Kildemo, J. Maria, J. J. Stammes, and O. Frette, "Mueller matrix measurement and moldeling pertaining to spectralon white reflectance standards," Opt. Exp. 20, 15045-15053 (2012).
    40. S. A. Hall, M. A. Hoyle, J. S. Post, and D. K. Hore, "Combined Stokes vector and Mueller matrix polarimetry for materials characterization," Anal. Chem. 85, 7613-7619 (2013).
    41. S. C. Siah, B. Hoex, and A. G. Aberle, "Accurate characterization of thin films on rough surfaces by spectroscopic ellipsometry," Thin Solids Films 545, 451-457 (2013).
    42. X. G. Chen, S. Y. Lin, C. W. Zhang, H. Jiang, Z. C. Ma, T. Y. Sun, and Z. M. Xu, "Accurate characterization of nanoimprinted resist patterns using Mueler matrix ellipsometry," Opt. Exp. 22, 15165-15177 (2014).
    43. H. T. Huang, W. Kong, and F. L. T. Jr, "Normal incidence spectrocsopic ellipsometry for critical dimension monitoring," Appl. Phys. Lett. 78, 3983-3985 (2001).
    44. S. M. F. Nee and T. W. Nee, "Principle Mueller matrix of reflection and scattering measured for a one dimensional rough surface," Opt. Eng. 41, 994-1001 (2002).
    45. P. A. Letnes, A. A. Maradudin, T. Nordam, and I. Simonsen, "Calculation of the Mueller matrix for scattering of light from two dimensional rough surfaces," Phys. Rev. A 86, 031803 (2012).
    46. S. R. Cloude , "Depolarization synthesis: understanding the optics of Mueller matrix depolarization," J. Opt. Soc. Am. A 30, 691-700 (2013).
    47. M. W. Williams, "Depolarization and cross polarization in ellipsometry of rough surfaces," Appl. Opt. 25, 3616-3622 (1986).
    48. A. M. Winkler, G. T. Bonnema, and J. K. Barton, “Optical polarimetry for noninvasive glucose sensing enabled by Sagnac interferometry,” Appl. Opt. 50, 2719-2731 (2011).
    49. L. Kumar, R. Gupta, D. Thakar, V. Vibhu, and S. Annapoorni, “A new route to glucose sensing based on surface plasmon resonance using polyindole,” Plasmonics 8, 487-494 (2013).
    50. W. C. Shih, K. L. Bechtel, and M. V. Rebec, “Noninvasive glucose sensing by transcutaneous Raman spectroscopy,” J. Biomed. Opt. 20, 051036 (2015).
    51. B. H. Malik and G. L. Coté, “Real time closed loop dua wavelength optical polarimetry for glucose monitoring,” J. Biomed. Opt. 15, 017002 (2010).
    52. M. Honma, E. Uchida, H. Saito, T. Harada, S. Muto, and T. Nose, “Simple system for measuring optical rotation of glucose using liquid-crystal grating,” Jpn. J. Appl. Phys. Opt. 54, 122601 (2015).
    53. B. H. Malik and G. L. Coté, “Modeling the corneal birefringence of the eye toward the development of a polarimetric glucose sensor,” J. Biomed. Opt. 15, 037012 (2010).
    54. R. R. Ansari, S. Böckle, and L. Rovati, “New optical scheme for a polarimetric based glucose sensor,” J. Biomed. Opt. 9, 103-115 (2004).
    55. X. D Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: A Monte Carlo study,” J. Biomed. Opt. 7, 279-290 (2002).
    56. N. Ghosh and M. F. G. Wood, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt. 13, 044036 (2008).
    57. C. H. Li, X. D. Nguyen, L. Narhi, L. Chemmalil, E. Towers, S. Muzammil, J. Gabrielson, and Y. J. Jiang, “Applications of circular dichroism (CD) for structural analysis of proteins: qualification of near and far-UV CD for protein higher order structural analysis,” J. Pharm. SCI 100, 4642-4654(2011).
    58. S. Fiedler, L. Cole, and S. Keller, “Automated circular dichroism spectrocopy for medium throughut analysis of protein conformation,” Anal. Chem. 85,1868-1872(2013).
    59. G. Siligardi, R. Hussain, S. G. Patching, and M. K. P. Jones, “Ligand and drug binding studies of membrane proteins revealed through circular dichroism spectroscopy,” Biochim. Biophys. Acta 1838, 34-42 (2014).
    60. N. Greefiled and G. D. Fasman, “Computed circular dichroism spectra for the evaluation of protein conformation,” Biochemistry 10, 4108-4115(1969).
    61. K. Matsuo, R. Yonehara, and K. Gekko, “Secondary structure analysis of protein by vacuum ultraviolet circular dichroism spectrocopy,” J. Biochem. 135, 405-411(2004).
    62. Z. Fan, H. Zhang, and A. O. Govorov, “Optical properties of chiral plasmonic tetramers: circular dichroism and multiple effects,” J. Phys. Chem. C, 14770-14777(2013).
    63. M. G. Cox, J. Ravi, P. D. Rakowska, and A. E. Knigt, “Uncertainty in measurement of protein circular dichroism spectra,” Metrologia 51, 67-79(2014).
    64. C. C. Liao and Y. L. Lo, “Extraction of anisotropic parameters of turbid media using hybrid model comprising differential and decomposition based Mueller matrices,” Opt. Exp. 21, 16831-16835(2013).
    65. T. Nehira, K. Ishihara, K. Matsuo, S. Izumi, T. Yamazaki, and A. Ishida, “A sensitive method based on fluorescence detected circular dichroism for protein local structure analysis,” Anal. Biochem. 430,179-184(2012).
    66. S. Nagamoto, M. Nagai, T. Ogura, and T. Kitagawa, “Near-UV circular dichroism and UV resonance Raman spectra of tryptophan residues as a structural marker of proteins,” J. Phys. Chem. B 117, 9343-9353(2013).
    67. Z. T. Li, Z. N. Zhu, W. J. Liu, Y. L. Zhou, B. Han, Y. Gao, and Z. Y. Tang, “Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies,” J. Anal. Chem. Soc. 134, 3322-3325(2012).
    68. A. D. Simone, F. Mancini, F. R. Fernandez, P. Rovero, C. Bertucci, and V. Andrisano, “Surface plasmon resonance fluorescence and circular dichroism studies for the characterization of the binding of BACE-1 inhibitors,” Anal. Bioanal. Chem. 405, 827-835(2013).
    69. A. O. Govorov, “Plasmon induced circular dichroism of a chiral molecule in the vicinity of metal nanocrystal application to various geometries,” J. Phys. Chem. C 115, 1914-1923(2011).
    70. A. Q. Fernandez, B. Kopera, K. S. Prado, A. Klinkova, M. Methot, G. Chauve, J. Bouchard, A. S. Helmy, and E. Kumacheva, “Circular dichroism of chiral nematic films of cellulose nanocrystals loaded with plasmonic nanoparticles,” ACS Nano 9, 10377-10385(2015).
    71. B. Liedberd, C. Nylander, and I. Lundstrom, “Surface plasmons resonance for gas detection and biosensing,” Sens. and Act. B 4, 299-304(1983).
    72. B. Liedberd, C. Nylander, and I. Lundstrom, “Biosensing with surface plasmons resonance – how it all started,” Biosensors Bioelectron. 10, i-ix(1995).
    73. M. M. B. Vidal, R. Lopez, S. Aleggret, J. A. Chamarro, I. Garces, and J. Mateo, “Determination of portable alcohol yield in musts by means of an SPR optical sensor,” Sens. and Act. B 11, 445-459(1993).
    74. Q. H. Phan, H. N. Nguyen, and Y. L. Lo, “Optimized double layered grating structures for Chem/biosensing in mid infrared range,” IEEE Sensors J. 14, 2938-2946(2014).
    75. L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, “Highly sensitive grapheme biosensors based on surface plasmon resonance,” Opt. Exp. 14, 14395-14400(2010).
    76. M. H. Hong, L. Shi, H. L. Li, Y. C. Du, Z. G. Wang, Y. C. Weng, and D. M. Li, “Resonance in a sub-wavelength metal dielectric free-standing grating utilized for gas sensors,” Opt. Commu. 285, 5480-5485(2012).
    77. D. F. Yang, H. H Lu, B. Chen, and C. W Lin, “Surface plasmon resonance of SnO2/Au Bi-layer films for gas sensing application,” Sens. and Act. B 145, 832-838(2010).
    78. C. de J. Fernandez, M. G. Manera, G. Pellegrini, M. Bersani, G. Mattei, R. Rella, L. Vasanelli, and P. Mazzoldi, “Surface plasmon resonance optical gas sensing of nanostructured ZnO films,” Sens. and Act. B 130, 531-537(2008).
    79. J. Homola, I. Koudela and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. and Act. B 54, 16-24(1999).
    80. H. Arwin, M. Poksinski, and K. Johansen, “Total internal reflection ellipsometry: principles and applications,” Appl. Opt. 43, 3028-3036 (2004).
    81. A. V. Nabok, A. Tsargorodskaya, A. K. Hassan, and N.F. Starodub, “Total internal reflection ellipsometry and SPR detection of low molecular weight environmental toxins,” Appl. Surf. Sci. 246, 381-386(2005).
    82. N. C. H. Le, V. Gubala, E. Clancy, T. Barry, T. J Smith, and D. E. Williams, “Ultrathin and smooth poly (methyl methacrylate) (PMMA) films for label free biomolecule detection with total internal reflection ellipsometry (TIRE),” Biosensors and Bioelectronics 36, 250-256(2012).
    83. A. G. Marin, J. M. Abad, E. Ruiz, E. Lorenzo, J. Piquera, and J. L. Paul, “Glutathione immunosensing platform based on total internal reflection ellipsometry enhanced by functionalized gold nanoparticles,” Anal. Chem. 86, 4969-4975(2014).
    84. Z. Balevicius, I. Baleviciute, S. Tumenas, L. Tamosaitis, A. Stirke, A. Makaraviciute, A. Ramanaviciene, and A. Ramanavicius, “In situ study of ligand receptor interaction by total internal reflection ellipsometry,” Thin film solid 571, 744-748(2014).
    85. Z. Balevicius, A. Makaraviciute, G. J. Babonas, S. Tumenas, V. Bukauskas, A. Ramanaviciene, and A. Ramanavicius, “Study of optical anisotropy in thin molecular layers by total internal reflection ellipsometry,” Sens. and Act. B 181, 119-124(2013).
    86. C. F. Lin and Y. J. Jen, “Use of Ta2O5 biaxial thin film as a high efficiency polarization converter,” J. Nanophotonic 6, 061507-1-9(2012).
    87. L. Bakshi, S. Eliezer, G. Appelabaum, N. Nissim, L. Perelmutter, and M. Mond, “A full Stokes vector ellipsometry measurement system for in situ diagnostics in dynamic experiments,” Rev. Sc. Instrum. 83, 053904-1-11, (2012).
    88. C. M. Wu, Z. C. Jian, S. F. Joe, and L. B. Chang, “High sensitivity sensor based on surface plasmon resonance and heterodyne interferometry,” Sens. and Act. B 92, 133-136(2003).
    89. R. Naraoka and K. Kajikawa, “Phase detection of surface plasmon resonance using rotating analyzer method,” Sens. and Act. B 107, 952-956(2005).
    90. S. G. Nelson, K. S. Johnston, and S. S Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sens. and Act. B 35-36, 187-191(1996).
    91. C. M. Wu and M. C. Pao, “Sensitivity tunable optical sensors based on surface plasmon resonance and phase detection,” Opt. Exp. 12, 3509-3513(2004).
    92. M. H. Chiu, “D-Type fiber biosensor based on surface plasmon resonance technology and heterodyne interferometry,” Opt. Lett. 30, 233-235(2005).
    93. W. K. Kuo and C. H. Chang, “Phase detection properties of grating coupled surface plasmon resonance sensors,” Opt. Exp. 19, 19656-19664(2010).
    94. D. J. L. Graham and L. R. Watkins, “A differential surface plasmon resonance sensor,” Sens. and Act. B 159, 33-38(2011).
    95. J. Melendez, R. Carr, D. Bartholomew, H. Taneja, S. Yee, C. Jung, and C. Furlong, “Development of a surface plasmon resonance sensor for commercial application,” Sens. and Act. B 38-39, 375-379(1997).
    96. J. M. Bingham, J. N. Anker, L. E. Kreno, and R. P. V. Duyne, “Gas sensing with high resolution localized surface plasma resonance specstrocopy,” J. Am. Chem. Soc. 132, 17358-17359 (2010).
    97. M. J. Jory, G. W. Bardberry, P. S. Cann, and J. R. Sambles, “A surface plsmon based optical sensor using acousto-optics,” Means. Sci. Technol. 6, 1193-1200 (1995).
    98. A. Berrier, P. Offermans, R. Cools, B. Megen, W. Knoben, G. Vecchi, J. G. Rivas, M. C. Calama, and S. H. Brogersma, “Enhancing the gas sensitivity of surface plasmon resonance with a nanoporous silica matrix,” Sens. and Act. B 160, 181-188(2011).
    99. J. Zhang, Z. H. Lu, and L. J. Wang, “Precision refractive index measurements of air, N2, O2, Ar and CO2,” Appl. Opt. 47, 3143-3151(2008).
    100. C. Cuthbertson and M. Cuthbertson, “On the refractive and dispersion of the halogens, halogens acids, ozone, steam of nitrogen and ammonia,” Phil. Trans. R. Soc. Lond. A. 213, 1-26(1914).
    101. W. W. Lam, L. H. Chu, C. L. Wong, and Y. T. Zhang, “A surface plasmon resonance for measurement of glucose in aqueous solution,” Sens. and Act. B 105, 138-143 (2005).
    102. S. K. Srivastava, V. Arora, S. Sapra, and B. D. Gupta, “Localized surface plasmon resonance based fiber optic u-shaped biosensor for the detection of blood glucose,” Plasmonics 7, 261-268 (2012).
    103. C. S. McNulty and G. Mauze, “Applications of wavelet analysis for determining glucose concentration of aqueous solutions using NIR spectroscopy,” Proc. SPIE 3257, 167-176 (1998).
    104. R. M. Yu, C. F. Pan, J. Chen, G. Zhu, and Z. L. Wang, “Enhanced performance of a ZnO nanowire based self-powered glucose sensor by piezotronic effect,” Adv. Funct. Mater 23, 5868-5874 (2013).
    105. K. H. Chen, C. C. Hsu, and D. C. Su, “Interferometric optical sensor for measuring glucose concentration,” Appl. Opt. 42, 5774-5776 (2003).
    106. J. C. Kim, A. Babajanyan, A. Hovsepyan, K. J. Lee, and B. Friedman, “Microwave dielectric resonator biosensor for aqueous glucose solution,” Rev. Sci. Instrum. 79, 086107 (2008).
    107. C. R. Yonzon, C. L. Haynes, X. Y. Zhang, J. T. Walsh, and R. P. V. Duyne, “A glucose biosensor based on surface enhanced Raman scattering: improved partition layer, temporal stability, reversibility, and resistance to serum protein interference,” Anal. Chem. 76, 78-85 (2004).
    108. Y. L. Lo, C. C. Liao, C. Y. Li, B. S. Shin, and S. M. Lee, “Measuring the optical rotation angle and circular dichroism of anisotropic optical media using a heterodyne polarimeter,” J. Lighwave Techno. 31, 1255-1262 (2013).
    109. P. Sun, Y. C. Ma, W. Liu, Q. H. Yang, and Q. Z. Jia, “Mueller matrix decomposition for determination of optical rotation of glucose molecules in turbid media,” J. Biomed. Opt. 19, 046015 (2014).
    110. W. Stöber, A. Fink, and E. J. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26, 62-69 (1968).
    111. T. H. H. Pham and Y. L. Lo, “Extraction of effective parameters of turbid media utilizing the Mueller matrix approach: study of glucose sensing,” J. Biomed. Opt. 17, 097002(2012).
    112. C. Houssier and K. Sauer, “Circular dichroism and magnetic circular dichroism of the chlorophyll and protochlorophyll pigments,” J. Amer. Chem. Soc. 92, 779-791(1970).
    113. R. Syafinar, N. Gomesh, M. Irwanto, M. Fareq, and Y. M. Irwan, “Chlorophyll pigments as nature based dye for dye-sensitized solar cell (DSSC),” Energy Procedia 79, 896-902(2015).
    114. J. N. Anker, W. P. Hall, O. Lyrandres, N. C. Shah, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442-453(2008).
    115. C. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Cold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100, 173114(2012).
    116. S. W. Lee, K. S. Lee, J. Ahn, J. J. Lee, M. G. Kim, and Y. B. Shin, “Highly sensitive biosensing using arrays of plasmonic Au nanodisks realized by nanoimprint lithography,” Acs Nano 5, 897-904(2011).
    117. F. Pineider. G. Campo, V. Bonanni, C. J. Fernandez, G. Mattei, A. Caneschi, D. Gatteschi, and C. Sangregorio, “Circular magnetoplasmonic models in gold nanoparticles,” Nano Lett. 13, 4785-4789(2013).
    118. Y. He, K. Lawrence, W. Ingram, and Y. Zhao, “Circular dichroism based refractive index sensing using chiral metamaterials,” Chem. Comm. 52, 2047-2050(2016).
    119. C. M. Herzinger, B. Johs, W. A. Mcgahan, and J. A. Woollam, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83, 3323-3336 (1998).
    120. D. W. Berreman, “Optics in stratified and anisotropic media 4x4 matrix formulation,” J. Opt. Soc. Am. 62, 502-510 (1972).

    下載圖示 校內:2021-06-20公開
    校外:2021-06-20公開
    QR CODE