| 研究生: |
藍淑娟 Lan, Shu-chuan |
|---|---|
| 論文名稱: |
中孔洞碳擔體對直接甲醇燃料電池效能之影響 Effect of Mesoporous Carbon Support on the Performance of Direct Methanol Fuel Cell |
| 指導教授: |
楊明長
Yang, Ming-chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 135 |
| 中文關鍵詞: | 離子交換膜 、觸媒 、膜電極組 、直接甲醇燃料電池 、中孔洞碳材 |
| 外文關鍵詞: | proton membrane, catalyst, membrane electrode assembly, Direct methanol feul cell, mesoporous carbon |
| 相關次數: | 點閱:74 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
直接甲醇燃料電池(Direct Methanol Fuel Cell, DMFC)是一種可將甲醇的化學能直接轉換成為電能的一種發電系統,亦為質子交換膜燃料電池的一種,此燃料電池的膜電極組(Membrane Electrode Assembly, MEA)是將陰陽兩極之多孔性觸媒在質子交換膜兩側熱壓而成。壓製條件的最佳化是電池效能的關鍵之一。本研究目標為對膜電極組熱壓時的溫度、壓力,在壓製過程前在質子交換膜先析鍍一層白金鍍層,以及使用不同中孔洞碳材作為觸媒擔體做一系列的研究,並與市售碳材、市售觸媒比較。
利用三極式的甲醇燃料電池系統對電池進行放電性能測試,可就放電極化曲線對陰陽兩極做個別的分析,進而得知熱壓溫度、壓力對陰陽兩極個別影響的程度,以獲取最適合的膜電極組製備條件。另外使用氣相層析儀求取甲醇滲透量,且以電化學方法了解觸媒電化學活性。
研究發現經由改變流場板的設計,讓膜電極組可以與流場板接觸良好,在僅使用碳紙擴散層而減少碳布擴散層的使用可減少電池的阻抗,的確可以提昇電池的效能,電池放電電壓0.2伏特時,電流密度大約能夠有21.3%的增加。中孔洞碳材作為觸媒擔體製備而成的觸媒,當碳材比表面積愈大,則觸媒的催化活性愈大。其中自製中孔洞碳材MC5與市售觸媒相比,觸媒活性稍小,但因其多孔的特性,使其較不受質傳阻力所影響。使用不同碳擔體,在最佳壓力下,陽極起始電位MC5介於ETEK與Johnson Matthey觸媒之間,但電池最高功率密度分別為兩者的1.6與1.3倍。
Direct methanol fuel cell (DMFC) is a type of power supplier that can directly concert the methanol chemical energy to electrical energy. This type of fuel cell is one kind of proton exchange membrane fuel cells (PEMFC) whose membrane electrode assembly (MEA) is made of a proton exchange membrane with catalyst layers compressed on the both sides. The optimization of fabrication condition is a key factor of the cell performance. This research focused on the effects of hot-pressing temperature and pressure during the preparation of membrane electrode assembly, the application of deposition a platinum layer on the proton exchange membrane before pressing, and the utilization of mesoporous carbon as the catalyst support. The results were compared with commercial carbon support and the commercial catalysts.
In order to obtain the optimization of assembling conditions of MEA, three-electrode system of DMFC was applied to perform the cell analysis for polarization curves of both anode and cathode. The influence of hot-pressing temperature and pressure on the cell performance of individual electrodes were investigated for optimization. Besides, the methanol permeability of the Nafion membranes were measured by gas chromatography and the electrochemical activities of the synthesizes catalysts were also evaluated.
The data showed that the MEA kept in good contact with bipolar plates by changing the design of the flow field. When carbon paper, without carbon cloth, was used for gas diffusion layer, it could reduce the impedence of single cell and promoted the cell performance. The current density increased by 21.3% in the current density at 0.2 voltage of cell voltage. Larger specific surface area of mesoporous carbon support gave higher electrochemical activity of the catalyst. Among the applied mesoporous carbons, MC5 had the best performance. Although the electrochemical activity of catalyst on MC5 was slight less than that of commercial catalyst, the former had smaller mass transport resistance.
The results of the single cell test showed that the highest performance was obtained with PtRu on the mesoporous carbon. The maximum power density of Pt-Ru/MC5 was 1.6 time of that with the commercial E-TEK catalyst and 1.3 time of that with the commercial Johnson Matthey catalyst.
1. James Larminie, Andrew Disks, “Fuel Cell System Explained”, John Wiley & Son, p. 1 (2001).
2. A. J. Appleby, F. R. Foulkes, “Fuel Cell Handbook”, Van Nostrand Reinhold, p. 133 (1989).
3. A. J. Appleby, F. R. Foulkes, “Fuel Cell Handbook”, Van Nostrand Reinhold, p. 207 (1989).
4. James Larminie, Andrew Disks, “Fuel Cell system Explained”, John Wiley & Son, p. 23 (2001).
5. Frano Barbir, “PEM Fuel Cells: theory and practice”, Elsevier Academic Press, p. 9 (2005).
6. 戴玉珍,”全球燃料電池車技術開發競爭趨勢”,工研院IEK系統能源組 (2005)。
7. Stefan Geiger, “Fuel Cells in China- A survey of current Developments”, Fuel Cell Today, 15 October (2003).
8. H. Uchida, Y. Mizuno, M. Watanabeb, “Suppression of Methanol Crossover and Distribution of Ohmic Resistance in Pt-Dispersed PEMs under DMFC operation”, J. Electrochem. Soc., Vol. 149, pp. 682-687 (2002).
9. A. A. Kulikovasky, “On the Nature of Mixed Potential in a DMFC”, J. Electrochem. Soc., Vol. 152, pp. A1121-A1127 (2005).
10. Jiahua Han, Hongtan Liu, “Real time measurements of methanol crossover in a DMFC”, Journal of Power Sources, Vol. 164, 99. 166-173 (2007).
11. X. M. Ren, M. S. Wilson, S. Gottesfeld, “ High Performance Direct Methanol Polymer Electrolyte Fuel Cells”, J. Electrochem. Soc., Vol. 143, pp. L12-L15 (1996).
12. Satoru Hikita, Kimitaka Yamane, Yasuo Nakajima, “ Measurement of methanol crossover in direct methanol fuel cell”, JSAE Reviiew, Vol. 22, pp. 151-156 (2001).
13. Z. Ogumi, Tohru Kuroe and Zen-Ichiro Takehara, “Gas Permeation In SPE Method”, J. Electrochem. Soc., Vol. 132, pp. 26012605 (1985).
14. H. Huang, P. K. Dasgupta, Z. Genfa and J. Wang, “A Pulse Amperometric Sensor for the Measurement of Atmospheric Hydrogen Peroxide”, Analytical Chem., Vol. 68, pp. 2062-2066 (1996).
15. J. S. Do. and R. Y. Shieh, “Electrochemical Nitrigen Dioxide Gas Sensor Based on Solid Polymeric Electrolyte”, Sensors and Actuators B - Chemical, Vol. 37, pp. 19-26 (1996).
16. L. J. Hobson, H. Ozu, M. Yamaguchi, “Modified Nafion 117 as an Improved Polymer Electrolyte Membrane for Direct Methanol Fuel Cells”, J. Electrochem. Soc., Vol. 148, pp. A1185-A1190 (2001).
17. Z. G. Shao, X. Wang, I. M. Hsing, “Composite Nafion/polyvinyl Alcohol Membranes for the Direct Methanol Fuel Cell”, J. Membr. Sci., Vol. 210, pp. 147-153 (2002).
18. Z. G. Shao, X. Wang, I. M. Hsing, “Nafion Membrane Coated with Sulfonated Polyvinyl alcohol.-Nafion Film for Direct Methanol fuel Cells”, Electrochem. and Solid-State Letters, Vol. 5, pp. 185-187 (2002).
19. Y. M. Kim, K. W. Park, J. H. Choi, I. S. Park, Y. E. Sung, “A Pd-impregnated nanocomposite Nafion membrane for use in high-concentration Methanol Fuel in DMFC”, Electrochem. Commun., Vol. 5, pp. 571-574 (2003).
20. H. L. Lin, T. L. Yu, L. N. Huang, L. C. Chen, K. S. Shen, G. B. Jung, “Nafion/PTFE Composite Membranes for Direct Methanol Fuel Cell Applications”, J. Power Sources, Vol. 150, pp. 11-19 (2005).
21. W. H. Lizcano-Valbuena, V. A. Paganin , C. A. P. Leite, F. Galembeck, E. R. Gonzalez, “Catalysts for DMFC : Relation between Morphology and Electrochemical Performance”, Electrochim. Acta, Vol. 48, pp. 3869-3878 (2003).
22. M. S. Loffler, H. Natter, R. Hempelmann, K. Wippermann, “Preparation and Characterisation of Pt-Ru Model Electrodes for the Direct Methanol Fuel Cell”, Electrochim. Acta, Vol. 48, pp. 3047-3051 (2003).
23. J. H. Choi, K. W. Park, H. K. Lee, Y. M. Kim, J. S. Lee, Y. E.un Sung, “Nano-composite of PtRu Alloy Electrocatalyst and Electronically Conducting Polymer for use as the Anode in A Direct Methanol Fuel Cell”, Electrochim. Acta, Vol. 48, pp. 2781-2789 (2003).
24. W. H. Lizcano-Valbuena, V. A. Paganin, E. R. onzalez, “Methanol Electro-Oxidation on Gas Diffusion Electrodes Repared with Pt/Ru/C Catalysts”, Electrochim. Acta, Vol. 47, pp. 3715-3722 (2002).
25. I. Honmaz, T. Toda, “temperature Dependence of Kinetics of Methanol Electro-oxidation on PtSn Alloys”, J. Electrochem. Soc., Vol.150, pp. 1689-1692 (2003).
26. J. H. Choi, K. W. Park, B. K. Kwon, Y. E. Sung, “Methanol Oxidation on Pt/Ru, Pt/Ni, and Pt/Ru/Ni Anode Electrocatalysts at Different temperatures for DMFCs”, J. Electrochem. Soc., Vol. 150, pp. 973-978 (2003).
27. B. Gurau, R. Viswanathan, R. Liu, T. J. Lafrenz, K. L. Ley, E. S. Smotkin, “Structural and Electrochemical Characterization of Binary, Ternary, and Quaternary Platinum Alloy Catalysts for Methanol Electro-oxidation”, J. Phys. Chem. B, Vol. 102, pp. 9997-10003 (1998).
28. S. D. Lin, T. C. Hsiao, “Morphology of Carbon Supported Pt-Ru Electrocatalyst and the CO Tolerance of Anodes for PEM Fuel Cells”, J. Phys. Chem., Vol. 103, pp. 97-103 (1999).
29. T. E. Shubina, M. T. M. Koper, “Quantum-chemical calculations of CO and OH interacting with Bimetallic Surfaces”, Electrochim. Acta, Vol. 47, pp. 3621-3628 (2002).
30. M. S. Liao, C. R. Cabrera, Y. Ishikawa, “A Theoretical Study of CO Adsorption on Pt, Ru and Pt-M (M = Ru, Sn, Ge) Clusters”, Surf. Sci., Vol. 445, pp. 267-282 (2000).
31. Kyung-Won Park, Jong-Ho Choi, Boo-Kil Kwon, Seol-Ah Lee, and Yung-Eun Sung, “Chemical and Electronic Effects of Ni in Pt/Ni and Pt/Ru/Ni Alloy Nanoparticles in Methanol Electrooxidation”, J. Phys. Chem. B, Vol. 106, pp. 1869-1877 (2002).
32. Jong-Ho Choi, Kyung-Won Park, In-Su Park, Woo-Hyun Nam, Yung-Eun Sung, “Methanol electro-oxidation and direct methanol fuel cell using Pt/Rh and Pt/Ru/Rh alloy catalysts”, Electrochimica Acta, Vol. 50, pp. 787-790 (2004).
33. E. Antolini, J.R.C. Salgado, E.R. Gonzalez, “Carbon supported Pt75M25 (M = Co, Ni) alloys as anode and cathode electrocatalysts for direct methanol fuel cells”, J. Electroanalytical Chemistry, Vol. 580, pp. 145-154 (2005).
34. Flavio Colmati, Ermete Antolini, Ernesto R. Gonzalez, “Pt-Sn/C electrocatalysts for methanol oxidation synthesized by reduction with formic acid”, Electrochimica Acta, Vol. 50, pp. 5496-5503 (2005).
35. Kyung-Won Park, Kwang-Soon Ahn, Yoon-Chae Nah, Jong-Ho Choi, and Yung-Eun Sung, “Electrocatalytic Enhancement of Methanol Oxidation at Pt-WOx Nanophase Electrodes and In-Situ Observation of Hydrogen Spillover Using Electrochromism”, J. Phys. Chem. B, Vol. 107, pp. 4352-4355 (2003).
36. Kyung-Won Park, Jong-Ho Choi, Seol-Ah Lee, Chanho Pak, Hyuck Chang, Yung-Eun Sung, “PtRuRhNi nanoparticle electrocatalyst for methanol electrooxidation in direct methanol fuel cell”, J. Catalysis, Vol. 224, pp. 236-242 (2004).
37. Kyung-Won Park, Dae-Seob Han, Yung-Eun Sung, “PtRh alloy nanoparticle electrocatalysts for oxygen reduction for use in direct methanol fuel cells”, J. Power Sources, Vol. 163, pp. 82-86 (2006).
38. Andrew L. Dicks, “The role of carbon in fuel cells”, J. Power Sources, Vol. 156, pp. 128-141 (2006).
39. Junsong Guo, Gongquan Sun, Qi Wang, Guoxiong Wang, Zhenhua Zhou, Shuihua Tang, Luhua Jiang, Bing Zhou, Qin Xin, “Carbon nanofibers supported Pt–Ru electrocatalysts for direct methanol fuel cells”, Carbon, Vol.44, pp. 152-157 (2006).
40. Kookil Han, Jaeseung Lee, Hasuck Kim, “Preparation and characterization of high metal content Pt-Ru alloy catalysts on various carbon blacks for DMFCs”, Electrochimica Acta, Vol. 52, pp. 1697-1702 (2006).
41. Shou-Kai Wang, Fangang Tseng, Tsung-Kuang Yeh, Ching-Chang Chieng, “Electrocatalystic properties improvement on carbon-nanotubes coated reaction surface for micro-DMFC”, J. Power Sources, Vol. 167, pp. 413-419 (2007).
42. King-Tsai Jeng, Chun-Ching Chien, Ning-Yih Hsu, Shi-Chern Yen, Shean-Du Chiou, Su-Hsine Lin and Wan-Min Huang, “Performance of direct methanol fuel cell using carbon nanotube-supported Pt–Ru anode catalyst with controlled composition”, J. Power Sources, Vol. 160, pp. 97-104 (2006).
43. Hongda Du, Baohua Li, Feiyu Kang, Ruowen Fu and Yuqun Zeng, “Carbon aerogel supported Pt–Ru catalysts for using as the anode of direct methanol fuel cells”, Carbon, Vol. 45, pp. 429-435 (2007).
44. A. Smirnova, X. Dong, H. Hara, A. Vasiliev and N. Sammes, “Novel carbon aerogel-supported catalysts for PEM fuel cell application”, International Journal of Hydrogen Energy, Vol. 30, pp. 149-158 (2005).
45. Hirotoshi Yamada, Taiki Hirai, Isamu Moriguchi, Tetsuichi Kudo, “A highly active Pt catalyst fabricated on 3D porous carbon”, J. Power Sources, Vol. 164, pp. 538-543 (2007).
46. K. Scott, W. M. Taama, P. Argyropoulos, “Material aspects of the liquid feed direct methanol fuel cell”, J. Applied Electrochemistry, Vol. 28, pp. 1389-1397 (1998).
47. Frano Barbir, “PEM Fuel Cells: theory and practice”, Elsevier Academic Press, p. 94 (2005).
48. 黃朝榮、林修正,”燃料電池的心臟,科學發展”,367期,26頁,(2003)。
49. 陳慕辰,“直接甲醇燃料電池陰陽兩極之阻抗分析”,國立成功大學化學工程系碩士論文 (2004)。
50. T. E. Springer, T. A. Zawodzinski, S. Gottesfeld, “Polymer electrolyte fuel cell model”, J. Electrohem. Soc., Vol. 138, pp. 2334-2342 (1989).
51. James Larminie, Andrew Disks, “Fuel Cell system Explained”, John Wiley & Son, p. 147 (2001).
52. H. Dohle, J. Divisek, R. Jung, “Process engineering of the Direct Methanol Fuel Cell”, J. Power Sources, Vol. 86, pp. 469-477 (2002).
53. 黃鎮江,“燃料電池”,全華科技圖書股份有限公司,台北市,8-5頁 (2004)。
54. T. Freelink, W. Visscher, J. A. R.n Veen, “On the role of Ru and Sn as Promotors of Methanol Electro-oxidation over Pt”, Surf. Sci., Vol.335, pp. 353-360 (1995).
55. R. Hodgson, H. Oman, “Battery data for use in expert systems”, J. Power Sources, Vol. 17, pp. 171-180 (1998).
56. James Larminie, Andrew Disks, “Fuel Cell system Explained”, John Wiley & Son, p. 145 (2001).
57. A. J. Appleby, F. R. Foulkes, “Fuel Cell Handbook”, Van Nostrand Reinhold, p. 23 (1989).
58. James Larminie, Andrew Disks, “Fuel Cell system Explained”, John Wiley & Son, p. 46 (2001).
59. Allen J. Bard, Larry R. Faulkner, “ Electrochemical Methods: Fundamentals and Applications”, John Wiley & Son, p. 100 (2001).
60. 薛志鴻,“質子交換模型燃料電池電極在CO存在下之阻抗分析”,國立成功大學化學工程系碩士論文 (2003)。
61. M. D. Bernardi, W. V. Mark, “A Mathematical Model of the Solid-Polymer-Electrolyte Fuel Cell”, J. Electrochem. Soc., Vol. 139, pp. 2477-2491 (1992).
62. T. A. Zawodzinski, Jr., C. Derouin, S. Radzinski, R. J. Sherman, V. T. Smith, T. E. springer, S. Gottesfeld, “Water Uptake by and Transport through Nafion 117 Membrane”, J. Electrochem. Soc., Vol. 140, pp. 1041-1047 (1993).
63. A. Oedegaard , C. Hebling , A. Schmitz , S. Møller-Holst , R. Tunold, “Influence of Diffusion Layer Properties on Low Temperature DMFC”, J. Power Sources, Vol. 127, pp. 187-196 (2004).
64. K. W. Park, B. K. Kwon, J. H. Choi, I. S. Park, Y. M. Kim, Y. E. Sung, “New RuO2 and Carbon–RuO2 Composite Diffusion Layer for use in Direct Methanol Fuel Cells”, J. Power Sources, Vol. 109, pp. 439-445 (2002).
65. T. Bewer, T. Beckmann, H. Dohle., J. Mergel, D. Stolten, “Novel Method for Investigation of Two-phase Flow in Liquid Feed Direct Methanol Fuel Cells using an Aqueous H2O2 Solution”, J. Power Sources, Vol. 125, pp. 1-9 (2004).
66. J. Kim, S. M. Lee, S. Srinivasan, “Modeling of Proton Exchange Membrane Fuel Cell Performance with an Empirical Equation”, J. Electrochem. Soc., Vol. 142, pp. 2670-2674 (1995).
67. J. T. Muller, P. M. Urban, ”Impedance studies of Direct Methanol Fuel Cell Anodes”, J. Power Sources, Vol. 84, pp. 157-160 (1999).
68. Rongzhong Jiang, Deryn Chu, “Comparative Studies of Methanol Crossover and Cell Performance for a DMFC”, J. Electrochem. Soc., Vol. 151, pp. A67-A76 (2004).
69. J. C. Amphlett, B. A. Peppley, “The Effect of Anode Flow Characteristics and Temperature on the Performance of A Direct Methanol Fuel Cell”, J. Power Sources, Vol. 96, pp. 204-213 (2001).
70. A. J. Bard, L. R. Faulkner, “Electrochemical Methods Fundamentals and Applications”, JOHN WILEY & SONS, INC., p. 27 (2001).
71. J. S. Newman, “Electrochemical Systems”, Englewood Cliffs, Prentice-Hall, Inc., pp. 380-382 (1991).
72. Dae Sik Kim, Ho Bum Park, Ji Won Rhim, Young Moo Lee, “ Preparation and characterization of crosslinked PVA/SiO2 hybird membranes containing sulfonic acid groups for direct methanol fuel cell applications”, J. Membrane Science, Vol. 240, pp. 37-48 (2004).
73. George E. Possin, “A Method for Forming Very Small Diameter Wires”, Rev. Sci. Instrum., Vol. 41, pp. 772-774 (1970).
74. I. C. Lewis, “Chemistry of carbonization”, Carbon, Vol. 20, pp. 519-529, (1982).
75. T. Wigmans, “Industrial aspects of production and use of activated carbons”, Carbon, Vol. 27, pp. 13-21, (1989).
76. K. Kinoshita, “Carbon: Electrochemical and Physicochemical Properties”, John Wiley & Sons (1988).
77. S. Brunauer, “The Adsorption of Gases and Vapor. Vol. I, Physical Adsorption ”, Princeton University, Princeton, Now York (1943).
78. V. Alfredsson, M. W. Anderson, “Structure of MCM-48 Revealed by Transmission Electron Microscopy”, Chem. Mater., Vol. 8, pp. 1141-1146 (1996).
79. E. P. Barrett, L. G. Joyner, P. P. Halenda, “The Determination of Pore Volume and Area Distribution in Porous Substances”, J. Am. Chem. Soc., Vol. 73, pp. 373-380 (1951).
80. M. Kruk, and M. Jaroniec, J. Phys. Chem. B, 104, 7960 (2000).
81. J. Gmehling, U. Onken, W. Arlt, “Vapor-liquid Equilibrium Data Collection”, Main: Dechema, Frankfurt, Vol. 1 part 1a, pp. 58-60 (1981).
82. W. Ernest Flick, “Industrial Solvent Handbook”, U.S.A.: Noyes Data Corp., Park Ridge, N.J., p. 292 (1991).
83. Ming-Chang Yang, Chih-Hung Hsueh, “Impedance Analysis of Working PEMFCs in the Presence of Carbon Monoxide, J. Electrochem. Society, Vol.153, pp. A1043-A1048 (2006).
84. 石守助,“三元合金觸媒之結構鑑定與其對有機分子催化氧化之研究”,國立台灣科技大學化學工程系碩士論文 (2005)。
85. E. Antolini, J. R. C. Salgado, E. R. Gonzalez, “Carbon support Pt72M25 (M= Co, Ni) alloys as anode and cathode electrocatalysts for direct methanol fuel cells”, J. Electroanalytical Chemistry, Vol. 580, pp. 145-154 (2005).
86. M. Wohr, K. Bolwin, W. Schnurnberger, M. Fisher, W. Neubrand, G. Eigenberger, “Dynamic Modeling and Simulation of A Polymer Membrane Fuel Cell Including Mass Transport Limitation”, Int. J. Hydrogen Energy, Vol. 23, pp. 213-218 (1998).
87. Jian Zhang, Geping Yin, Zhenbo Wang, Yuyan Shao, “ Effects of MEA preparation on the performance of a direct methanol fuel cell”, J. Power Sources, Vol. 160, pp. 1035-1040 (2006).
88. Zhanliang Wang, Yang Liu, Vladimir M. Linkov, “The influence of catalyst layer morphology on the electrochemical performance of DMFC anode”, J. Power Sources, Vol. 160, pp. 326-333 (2006).