簡易檢索 / 詳目顯示

研究生: 湯鎔毓
Tung, Rong-Yu
論文名稱: 台南市區次微米微粒之化學組成、來源解析與事件日探討
Chemical composition and source apportionment of submicron aerosol in Tainan
指導教授: 吳義林
Wu, Yee-Lin
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 140
中文關鍵詞: 次微米微粒化學成份分析正因子矩陣法有機氣膠特性解析
外文關鍵詞: Submicron aerosol, Chemical compositions, Positive matrix factorization, Source apportionment of organic matter
相關次數: 點閱:97下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究自2012年11月底,連續三個月於台南成功大學卓群大樓樓頂以高時間解析率之氣膠化學成份監測儀(Aerosol Chemical Speciation Monitor, ACSM)量測台南市次微米微粒化學組成及濃度趨勢變化,並以濾紙匣系統(Filter Pack)手動採樣分析PM1質量濃度與成份組成,比較兩者之趨勢分布及相關程度。此外,本研究亦使用正矩陣因子法(Positive Matrix Factorization, PMF)進行解析氣膠化學成份監測儀之有機質譜數據,配合環保署台南中山測站之監測數據,判別台南市次微米微粒之主要有機成分類型、來源及其貢獻比例。
      研究結果顯示,監測期間ACSM之次微米微粒平均濃度為25.6±13.6µg/m3,次微米微粒中各個成分平均濃度分別為OM:10.0±6.32 µg/m3、SO42-:4.30±2.25 µg/m3、NO3-:6.61±4.40 µg/m3、NH4+:3.78±1.77 µg/m3及Cl-:0.82±0.73µg/m3。將其與環保署台南測站(中山測站)之PM2.5濃度趨勢圖相比較,其相關係數可達0.76;PM1手動採樣平均質量濃度為34.3±13.8µg/m3。各項PM1離子中,採樣期間以SO42-平均濃度最高,為8.85±3.91 µg/m3,其次為NO3-,採樣期間平均濃度為7.31±4.46 µg/m3。其他離子之濃度分別為,Cl-:1.00±0.65、NH4+:4.34±2.20、Na+:0.70±0.34、K+:0.49±0.30、Mg2+:0.28±0.16、Ca2+:1.77±0.94 µg/m3。碳成分之結果OC與EC平均濃度分別為5.05±2.23及1.04±0.59 µg/m3。
      本研究以PMF解析次微米微粒有機氣膠之特性,共解析出四種有機氣膠特性,以低揮發性氧化有機氣膠LV-OOA占有整體比例最高(55%),其次為半揮發性氧化有機氣膠SV-OOA(19%),類碳氫有機氣膠HOA(14%)與生質燃燒排放有機氣膠BBOA(12%)。
      事件日中擴散增量濃度之部分,除完全擴散增量型與完全額外增量型外,其他主要擴散增量時間區間皆於上午八時至下午一時及下午六時至十一時,而擴散增量最少之時間區間則約為下午二時至四時。額外增量之部分,主要增量物種為OM中之LV-OOA、SV-OOA以及NO3-與SO42-,顯示事件日中額外增量之部分主要以二次衍生物為主。

      The characteristics of concentrations and chemical compositions of submicron aerosol (PM1) were measured by the Aerosol Chemical Speciation Monitor (ACSM) at National Cheng Kung University (NCKU) in Tainan from November 2012 to February 2013. In the meantime, PM1 was also measure by filter pack system to analyze the chemical compositions and to compare with those by ACSM. Positive Matrix Factorization (PMF) was used to resolve ACSM organic aerosol mass spectra to characterize the sources and evolutions of ambient organic aerosol.
      Submicron aerosol concentration measured by ACSM was 25.6±13.6 μg/m3 for the entire study, and correlated well with PM2.5 concentration at EPA air quality Tainan site (R=0.76). The ratio of PM1 to PM2.5 is approximately 0.56. The average concentrations of organic component, nitrate, sulfate, ammonium and chlorine were 10.0±6.32, 6.61±4.40, 4.30±2.25, 3.78±1.77 and 0.82±0.73 μg/m3 respectively. PM1 measured by filter pack system is average 34.3±13.8 µg/m3, and the concentrations of each chemical species were shown as following: SO42-(8.85±3.91 µg/m3), Cl-(1.00±0.65 µg/m3), NH4+(4.34±2.20 µg/m3), Na+(0.70±0.34 µg/m3), K+(0.49±0.30 µg/m3), Mg2+(0.28±0.16 µg/m3), Ca2+(1.77±0.94 µg/m3), OC(5.05±2.23 µg/m3), EC(1.04±0.59 µg/m3).
      Four factors have been determined by using PMF to characterize the sources and evolutions of ambient organic aerosols (OA). Among the four factors, low-volatility oxygenated OA (LV-OOA) had the highest proportion (55%) of total OA, followed by hydrocarbon-like OA (HOA) of 14%, semi-volatile oxygenated OA (SV-OOA) of 19% and biomass burning OA (BBOA) of 12%.
      In the PM2.5 event, the increase of concentration caused by dispersion is significant from 8 am to 1 pm and from 6 pm to 11 pm, and it is not significant from 2 pm to 4 pm. In the part of excess source, the dominant excess species of PM1 was LV-OOA, SV-OOA, SO42-and NO3-, and it show that secondary pollutants are main excess source.

    第 1 章 前言......1 1.1 研究緣起......1 1.2 研究目的......2 1.3 研究架構......3 第 2 章 文獻回顧......4 2.1 大氣懸浮微粒......4 2.1.1 大氣懸浮微粒之定義與來源......4 2.1.2 懸浮微粒化學組成與特性...... 7 2.1.3 懸浮微粒於環境與健康之影響......9 2.1.4 國內懸浮微粒歷年研究與監測結果......11 2.2 次微米微粒......21 2.2.1 次微米微粒相關研究概況......21 2.2.2 有機氣膠之來源與特性探討......24 2.3 受體模式......26 2.3.1 受體模式發展沿革......26 2.3.2 正矩陣因子法(Positive Matrix Factorization, PMF)......28 2.3.3 受體模式之相關研究與應用......30 第 3 章 研究方法......34 3.1 監測作業規劃......34 3.1.1 監測作業概述 ......34 3.1.2 監測地點概述 ......34 3.1.3 監測物種與使用儀器說明......36 3.2 次微米微粒有機成分解析方法......44 3.2.1 PMF輸入資料建立......44 3.3 事件日之定義與判斷......47 3.3.1 假日與非假日定義......47 3.3.2 事件日與非事件日之定義 ......47 3.3.3 事件日增量定義與計算方式......48 第 4 章 結果與討論......50 4.1 冬季連續監測與採樣結果......50 4.1.1 監測期間環境背景說明......50 4.1.2 品保品管結果 ......55 4.1.3 PM1手動採樣分析結果......58 4.1.4 懸浮微粒連續自動監測結果......62 4.2 台南市次微米微粒有機成分特性探討......75 4.2.1 PMF模式輸入參數......76 4.2.2 PMF模式因子數量選擇......77 4.2.3 有機成分特性探討......83 4.3 事件日汙染物增量探討......93 4.3.1 採樣期間事件日數量探討 ......93 4.3.2 事件日增量來源討論......97 4.3.3 擴散增量計算合理性判定 ......99 4.3.4 ACSM之事件日與非事件日濃度逐時變化比對......101 4.3.5 事件日增量來源計算結果探討......106 第 5 章 結論與建議......130 5.1 結論......130 5.2 建議......132 第 6 章 參考文獻......133

    Appel, G.B., Cook, H.T., Hageman, G., Jennette, J.C., Kashgarian, M., Kirschfink, M., Lambris, J.D., Lanning, L., Lutz, H.U., Meri, S., Rose, N.R., Salant, D.J., Sethi, S., Smith, R.J.H., Smoyer, W., Tully, H.F., Tully, S.P., Walker, P., Welsh, M., Wurzner, R., Zipfel, P.F. Membranoproliferative glomerulonephritis type II (dense deposit disease): An update. Journal of the American Society of Nephrology, 16(5), 1392-1403, 2005.
    Bahreini, R., Keywood, M.D., Ng, N.L., Varutbangkul, V., Gao, S., Flagan, R.C., Seinfeld, J.H., Worsnop, D.R., Jimenez, J.L. Measurements of secondary organic aerosol from oxidation of cycloalkenes, terpenes, and m-xylene using an Aerodyne aerosol mass spectrometer. Environmental Science & Technology, 39(15), 5674-5688, 2005.
    Canagaratna, M.R., Jayne, J.T., Ghertner, D.A., Herndon, S., Shi, Q., Jimenez, J.L., Silva, P.J., Williams, P., Lanni, T., Drewnick, F., Demerjian, K.L., Kolb, C.E., Worsnop, D.R. Chase studies of particulate emissions from in-use New York City vehicles. Aerosol Science and Technology, 38(6), 555-573, 2004.
    Charron, A., Harrison, R.M. Primary particle formation from vehicle emissions during exhaust dilution in the roadside atmosphere. Atmospheric Environment, 37(29), 4109-4119, 2003.
    Chou, C.C.K., Lee, C.T., Cheng, M.T., Yuan, C.S., Chen, S.J., Wu, Y.L., Hsu, W.C., Lung, S.C., Hsu, S.C., Lin, C.Y., Liu, S.C. Seasonal variation and spatial distribution of carbonaceous aerosols in Taiwan. Atmospheric Chemistry and Physics, 10(19), 9563-9578, 2010.
    Chu, S.H. PM2.5 episodes as observed in the speciation trends network. Atmospheric Environment, 38(31), 5237-5246, 2004.
    de Gouw, J.A., Middlebrook, A.M., Warneke, C., Goldan, P.D., Kuster, W.C., Roberts, J.M., Fehsenfeld, F.C., Worsnop, D.R., Canagaratna, M.R., Pszenny, A.A.P., Keene, W.C., Marchewka, M., Bertman, S.B., Bates, T.S. Budget of organic carbon in a polluted atmosphere: Results from the New England Air Quality Study in 2002. Journal of Geophysical Research-Atmospheres, 110(D16), 2005.
    Fang, G.C., Wu, Y.S., Chen, J.C., Rau, J.Y., Huang, S.H., Lin, C.K. Concentrations of ambient air particulates (TSP, PM(2.5) and PM(2.5-10)) and ionic species at offshore areas near Taiwan Strait. Journal of Hazardous Materials, 132(2-3), 269-276, 2006.
    Habre, R., Coull, B., Koutrakis, P. Impact of source collinearity in simulated PM2.5 data on the PMF receptor model solution. Atmospheric Environment, 45(38), 6938-6946, 2011.
    Ham, W.A., Kleeman, M.J. Size-resolved source apportionment of carbonaceous particulate matter in urban and rural sites in central California. Atmospheric Environment, 45(24), 3988-3995, 2011.
    Henry, R.C., Lewis, C.W., Hopke, P.K., Williamson, H.J. Review of Receptor Model Fundamentals. Atmospheric Environment, 18(8), 1507-1515, 1984.
    Hildemann, L.M., Markowski, G.R., Cass, G.R. Chemical-Composition of Emissions from Urban Sources of Fine Organic Aerosol. Environmental Science & Technology, 25(4), 744-759, 1991.
    Hinds, W. C. Aerosol Technology : Properties, Behaviour and Measurement of Airborne Particles. John Wiley and Sons, New York, 1999.
    Hopke, P.K. An Introduction to Receptor Modeling. Chemometrics and Intelligent Laboratory Systems, 10(1-2), 21-43, 1991.
    Horvath, H. Atmospheric Light-Absorption - a Review. Atmospheric Environment Part a-General Topics, 27(3), 293-317, 1993.
    ICRP publication 66: human respiratory tract model for radiological protection. A Report of a task group of the International Commission on Radiological Protection. Annals of the ICRP 24 (1-3), 1-480.
    Jacobson, M.C., Hansson, H.C., Noone, K.J., Charlson, R.J. Organic atmospheric aerosols: Review and state of the science. Reviews of Geophysics, 38(2), 267-294, 2000.
    Jaffrezo, J.L., Aymoz, G., Cozic, J. Size distribution of EC and OC in the aerosol of Alpine valleys during summer and winter. Atmospheric Chemistry and Physics, 5, 2915-2925, 2005.
    Jimenez, J.L., Canagaratna, M.R., Donahue, N.M., Prevot, A.S.H., Zhang, Q., Kroll, J.H., DeCarlo, P.F., Allan, J.D., Coe, H., Ng, N.L., Aiken, A.C., Docherty, K.S., Ulbrich, I.M., Grieshop, A.P., Robinson, A.L., Duplissy, J., Smith, J.D., Wilson, K.R., Lanz, V.A., Hueglin, C., Sun, Y.L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara, P., Ehn, M., Kulmala, M., Tomlinson, J.M., Collins, D.R., Cubison, M.J., Dunlea, E.J., Huffman, J.A., Onasch, T.B., Alfarra, M.R., Williams, P.I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A., Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J.Y., Zhang, Y.M., Dzepina, K., Kimmel, J.R., Sueper, D., Jayne, J.T., Herndon, S.C., Trimborn, A.M., Williams, L.R., Wood, E.C., Middlebrook, A.M., Kolb, C.E., Baltensperger, U., Worsnop, D.R. Evolution of Organic Aerosols in the Atmosphere. Science, 326(5959), 1525-1529, 2009.
    Kanakidou, M., Seinfeld, J.H., Pandis, S.N., Barnes, I., Dentener, F.J., Facchini, M.C., Van Dingenen, R., Ervens, B., Nenes, A., Nielsen, C.J., Swietlicki, E., Putaud, J.P., Balkanski, Y., Fuzzi, S., Horth, J., Moortgat, G.K., Winterhalter, R., Myhre, C.E.L., Tsigaridis, K., Vignati, E., Stephanou, E.G., Wilson, J. Organic aerosol and global climate modelling: a review. Atmospheric Chemistry and Physics, 5, 1053-1123, 2005.
    Kim, E., Hopke, P.K., Larson, T.V., Covert, D.S. Analysis of ambient particle size distributions using unmix and positive matrix factorization. Environmental Science & Technology, 38(1), 202-209, 2004.
    Kondo, Y., Miyazaki, Y., Takegawa, N., Miyakawa, T., Weber, R.J., Jimenez, J.L., Zhang, Q., Worsnop, D.R. Oxygenated and water-soluble organic aerosols in Tokyo. Journal of Geophysical Research-Atmospheres, 112(D1), 2007.
    Kulmala, M., Suni, T., Lehtinen, K.E.J., Dal Maso, M., Boy, M., Reissell, A., Rannik, U., Aalto, P., Keronen, P., Hakola, H., Back, J.B., Hoffmann, T., Vesala, T., Hari, P. A new feedback mechanism linking forests, aerosols, and climate. Atmospheric Chemistry and Physics, 4, 557-562, 2004.
    Kumar, P., Fennell, P., Britter, R. Effect of wind direction and speed on the dispersion of nucleation and accumulation mode particles in an urban street canyon. Science of the Total Environment, 402(1), 82-94, 2008a.
    Kumar, P., Fennell, P., Britter, R. Measurements of particles in the 5-1000 nm range close to road level in an urban street canyon. Science of the Total Environment, 390(2-3), 437-447, 2008b.
    Kumar, P., Fennell, P., Langley, D., Britter, R. Pseudo-simultaneous measurements for the vertical variation of coarse, fine and ultrafine particles in an urban street canyon. Atmospheric Environment, 42(18), 4304-4319, 2008c.
    Kumar, P., Robins, A., Vardoulakis, S., Britter, R. A review of the characteristics of nanoparticles in the urban atmosphere and the prospects for developing regulatory controls. Atmospheric Environment, 44(39), 5035-5052, 2010.
    Kumar, P., Robins, A., Vardoulakis, S., Britter, R. A review of the characteristics of nanoparticles in the urban atmosphere and the prospects for developing regulatory controls. Atmospheric Environment, 44(39), 5035-5052, 2011b.
    Lawson, C. L., Hanson, R. J. Solving Least Squares Problems. Society for Industrial Mathematics, 1976.
    Lee, S., Liu, W., Wang, Y.H., Russell, A.G., Edgerton, E.S. Source apportionment of PM2.5: Comparing PMF and CMB results for four ambient monitoriniz sites in the southeastern United States. Atmospheric Environment, 42(18), 4126-4137, 2008.
    Lee, S., Russell, A.G. Estimating uncertainties and uncertainty contributors of CMB PM2.5 source apportionment results. Atmospheric Environment, 41(40), 9616-9624, 2007.
    Liu, P.S.K., Deng, R., Smith, K.A., Williams, L.R., Jayne, J.T., Canagaratna, M.R., Moore, K., Onasch, T.B., Worsnop, D.R., Deshler, T. Transmission efficiency of an aerodynamic focusing lens system: Comparison of model calculations and laboratory measurements for the Aerodyne Aerosol Mass Spectrometer. Aerosol Science and Technology, 41(8), 721-733, 2007.
    Lohmann, U., Feichter, J. Global indirect aerosol effects: a review. Atmospheric Chemistry and Physics, 5, 715-737, 2005.
    Malinowski, E. R. Factor analysis in chemistry. Wiley, New York, 1991.
    Mohan, M., Payra, S. Influence of aerosol spectrum and air pollutants on fog formation in urban environment of megacity Delhi, India. Environmental Monitoring and Assessment, 151(1-4), 265-277, 2009.
    Nel, A. Air pollution-related illness: Effects of particles. Science, 308(5723), 804-806, 2005.
    Ng, N.L., Canagaratna, M.R., Jimenez, J.L., Zhang, Q., Ulbrich, I.M., Worsnop, D.R. Real-Time Methods for Estimating Organic Component Mass Concentrations from Aerosol Mass Spectrometer Data. Environmental Science & Technology, 45(3), 910-916, 2011a.
    Ng, N.L., Herndon, S.C., Trimborn, A., Canagaratna, M.R., Croteau, P.L., Onasch, T.B., Sueper, D., Worsnop, D.R., Zhang, Q., Sun, Y.L., Jayne, J.T. An Aerosol Chemical Speciation Monitor (ACSM) for Routine Monitoring of the Composition and Mass Concentrations of Ambient Aerosol. Aerosol Science and Technology, 45(7), 780-794, 2011b.
    Ogulei, D., Hopke, P.K., Chalupa, D.C., Utell, M.J. Modeling source contributions to submicron particle number concentrations measured in Rochester, New York. Aerosol Science and Technology, 41(2), 179-201, 2007.
    Ohta, S., Okita, T. A Chemical Characterization of Atmospheric Aerosol in Sapporo. Atmospheric Environment Part a-General Topics, 24(4), 815-822, 1990.
    Paatero, P. Least squares formulation of robust non-negative factor analysis. Chemometrics and Intelligent Laboratory Systems, 37(1), 23-35, 1997a.
    Paatero, P. A weighted non-negative least squares algorithm for three-way 'PARAFAC' factor analysis. Chemometrics and Intelligent Laboratory Systems, 38(2), 223-242, 1997b.
    Paatero, P. The multilinear engine - A table-driven, least squares program for solving multilinear problems, including the n-way parallel factor analysis model. Journal of Computational and Graphical Statistics, 8(4), 854-888, 1999.
    Paatero, P., Hopke, P.K. Discarding or downweighting high-noise variables in factor analytic models. Analytica Chimica Acta, 490(1-2), 277-289, 2003.
    Paatero, P., Hopke, P.K., Song, X.H., Ramadan, Z. Understanding and controlling rotations in factor analytic models. Chemometrics and Intelligent Laboratory Systems, 60(1-2), 253-264, 2002.
    Paatero, P., Tapper, U. Analysis of Different Modes of Factor-Analysis as Least-Squares Fit Problems. Chemometrics and Intelligent Laboratory Systems, 18(2), 183-194, 1993.
    Paatero, P., Tapper, U. Positive Matrix Factorization - a Nonnegative Factor Model with Optimal Utilization of Error-Estimates of Data Values. Environmetrics, 5(2), 111-126, 1994.
    Pilinis, C., Seinfeld, J.H. Development and Evaluation of an Eulerian Photochemical Gas Aerosol Model. Atmospheric Environment, 22(9), 1985-2001, 1988.
    Schauer, J.J., Rogge, W.F., Hildemann, L.M., Mazurek, M.A., Cass, G.R., Simoneit, B.R.T. Source apportionment of airborne particulate matter using organic compounds as tracers. Atmospheric Environment, 30(22), 3837-3855, 1996.
    Seinfeld, J. H., Pandis, S. N. Atmospheric Chemistry and Physics From Air Pollution to Climate Change. Wiley, New York, 1998.
    Seinfeld, J. H., Pandis, S.N. Atmospheric Chemistry and Physics - From Air Pollution to Climate Change. John Wiley and Sons, New york, 2006.
    Seinfeld, J.H. Climate change. Reviews in Chemical Engineering, 24(1), 1-65, 2008.
    Timonen, H., Carbone, S., Aurela, M., Saarnio, K., Saarikoski, S., Ng, N.L., Canagaratna, M.R., Kulmala, M., Kerminen, V., Worsnop, D.R., Hillamo, R. Characteristics, sources and water-solubility of ambient submicron organic aerosol in spring time in Helsinki, Finland. Aerosol Science, 56, 61-77, 2012.
    Tsai, Y.I., Kuo, S.C., Lee, W.J., Chen, C.L., Chen, P.T. Long-term visibility trends in one highly urbanized, one highly industrialized, and two Rural areas of Taiwan. Science of the Total Environment, 382(2-3), 324-341, 2007.
    Turpin, B.J., Huntzicker, J.J. Secondary Formation of Organic Aerosol in the Los-Angeles Basin - a Descriptive Analysis of Organic and Elemental Carbon Concentrations. Atmospheric Environment Part a-General Topics, 25(2), 207-215, 1991.
    Turpin, B.J., Huntzicker, J.J., Adams, K.M. Intercomparison of Photoacoustic and Thermal Optical Methods for the Measurement of Atmospheric Elemental Carbon. Atmospheric Environment Part a-General Topics, 24(7), 1831-1835, 1990.
    Ulbrich, I.M., Canagaratna, M.R., Zhang, Q., Worsnop, D.R., Jimenez, J.L. Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data. Atmospheric Chemistry and Physics, 9(9), 2891-2918, 2009.
    Xie, Y.L., Hopke, P.K., Paatero, P., Barrie, L.A., Li, S.M. Locations and preferred pathways of possible sources of Arctic aerosol. Atmospheric Environment, 33(14), 2229-2239, 1999.
    Zhang, Q., Alfarra, M.R., Worsnop, D.R., Allan, J.D., Coe, H., Canagaratna, M.R., Jimenez, J.L. Deconvolution and quantification of hydrocarbon-like and oxygenated organic aerosols based on aerosol mass spectrometry. Environmental Science & Technology, 39(13), 4938-4952, 2005.
    Zhang, Q., Jimenez, J.L., Canagaratna, M.R., Allan, J.D., Coe, H., Ulbrich, I., Alfarra, M.R., Takami, A., Middlebrook, A.M., Sun, Y.L., Dzepina, K., Dunlea, E., Docherty, K., DeCarlo, P.F., Salcedo, D., Onasch, T., Jayne, J.T., Miyoshi, T., Shimono, A., Hatakeyama, S., Takegawa, N., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Williams, P., Bower, K., Bahreini, R., Cottrell, L., Griffin, R.J., Rautiainen, J., Sun, J.Y., Zhang, Y.M., Worsnop, D.R. Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes. Geophysical Research Letters, 34(13), 2007.
    Zhou, L.M., Hopke, P.K., Stanier, C.O., Pandis, S.N., Ondov, J.M., Pancras, J.P. Investigation of the relationship between chemical composition and size distribution of airborne particles by partial least squares and positive matrix factorization. Journal of Geophysical Research-Atmospheres, 110(D7), 2005.
    李俊璋,「台北市空氣中懸浮微粒物理化學分析及學童肺功能之研究」,碩士論文,國立台灣大學環境工程研究所,1982。
    何丁舜等,「台北地區PM10與腦中風發生率相關性之研究」,第十屆氣膠科技研討會,2003。
    周崇光等,「大氣氣膠化學特徵觀測」,行政院環境保護署度專案計畫,2005。
    張士昱等,「98年台中縣衍生性氣膠調查計畫期末報告」,台中縣環境保護局研究計畫,2010。
    曾國書,「屏東都會區細懸浮微粒特性之研究」,碩士論文,國立屏東科技大學環境工程與科學系,2006。
    蕭慧娟,「空氣污染概論」,空氣污染防治專責人員訓練教材,33-41,1996。
    鍾孟臻等,「中雲嘉地區大氣懸浮微粒組成探討專案工作計畫」,行政院環境保護署專案計畫, 2010。

    下載圖示 校內:2021-07-04公開
    校外:2021-07-04公開
    QR CODE