簡易檢索 / 詳目顯示

研究生: 高弘道
Kao, Hung-Tao
論文名稱: 根據全球資訊網用戶瀏覽行為以建構個人化知識地圖之方法
Personalization of Domain Ontology Based on the User Behavior of WWW Browsing
指導教授: 郭耀煌
Kuo, Yau-Hwang
郭淑美
Guo, Shu-Mei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 76
中文關鍵詞: 瀏覽行為自然語言處理個人化模糊推論知識地圖
外文關鍵詞: Ontology, Personalization, Fuzzy Inference, Chinese Natural Language Processing, Browsing Behavior
相關次數: 點閱:124下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在廣大的網際網路中要找尋到自己真正想要的資訊通常不是一件很輕鬆的事,有鑑於此為了改善使用者運用系統服務的品質,本論文提出一套方法利用使用者瀏覽於網際網路上的行為,分析並學習使用者的喜好及習慣,以建置個人知識地圖(Personal Ontology),藉此讓電腦系統對於使用者有所瞭解,進而提升系統服務品質。本論文首先分析使用者於網際網路上之行為記錄,利用聚類、資料探勘及模糊推論等技術,找出使用者正常瀏覽行為。然後利用中研院所提供之CKIP中文斷詞系統,將屬於使用者正常瀏覽行為的內容進行斷詞及詞性標注,再利用此內容的領域知識地圖(Domain Ontology)進行內容概念比對,再參照使用者瀏覽順序和次數等特徵並以模糊推論計算出使用者對於此份內容裡所描述概念的喜好程度,然後對應到領域知識地圖中的概念,給予個人化的權重,以呈現使用者對於此領域的喜好程度,進而形成一個個人化的知識地圖。最後,本論文提出一個資訊推薦機制,運用個人知識地圖進行概念比對,為使用者推薦其喜好相關之內容。

    To find the information that we do really want in the large-scale Internet isn’t a light work. Hence, in order to improve the quality of the information service, we propose a model that according to the user’s browsing behavior on the Internet to analyze and learn the user’s preference and habits, and construct personal ontology for the specific domain. First, we analyze the user’s behavior on the Internet by the technologies of clustering, data mining, and fuzzy inference to find out the user’s normal browsing behavior. Second, the CKIP system is utilized to carry out the Chinese natural language processing for the user-browsed contents. Third, the concepts of content are derived from the browsed content and the domain ontology. In addition, the features of user browsing sequence and browsing time are used to infer the user’s preference degree by fuzzy inference mechanism. Finally, we propose an information recommendation model to recommend the information that related with the preference of the user with personal ontology.

    Chapter 1 Introduction 1 1.1 Trends in Internet Information Service 1 1.2 Motivation 2 1.3 Thesis Organization 4 Chapter 2 Related Works and Background 5 2.1 Information Retrieval Systems 5 2.1.1 Typical IR Model 5 2.1.2 Document Preprocessing 6 2.1.3 Dimension Reduction 8 2.2 Personalized Service 10 2.2.1 Personalized Information Service 10 2.2.2 Personalization Techniques 11 2.3 Concept of Ontology 14 2.3.1 Ontology as Vocabulary 14 2.3.2 Ontology as Content Theory 15 2.3.3 Why Ontology Important 15 Chapter 3 Personalization of Domain Ontology by User Behavior Analysis 17 3.1 The Flow Chart of Domain Ontology Personalization 17 3.2 The Structure of Domain Ontology 19 3.3 User Browsing Data Collection 20 3.4 User Browsing Behavior Analysis 22 3.4.1 User Behavior Representation Functions 23 3.4.2 Fuzzy Inference 25 3.5 User-Browsed Content Analysis 30 3.5.1 Content Conceptualization 31 3.5.2 Relations of Browsing Content Sequence 32 Chapter 4 Recommendation Mechanism of Personalized Information Service 40 4.1 Personalized Information Service 40 4.2 System Architecture 41 4.3 System Components 42 4.3.1 New Content Retrieval Mechanism 42 4.3.2 Content Processing Mechanism 44 4.3.4 Personalized Recommendation Agent 45 Chapter 5 Experimental Results and Analysis 49 5.1 Personalization of Domain Ontology 49 5.1.1 Domain Ontology Construction 49 5.1.2 User Behavior Representation Functions 51 5.1.3 Membership Functions 52 5.1.4 Personal Ontology 53 5.2 Personalized Information Recommendation 55 Chapter 6 Conclusions and Future Works 58 6.1 Conclusions 58 6.2 Future Works 59 Reference 60 Appendix A. The Membership Functions of Each User 63 Appendix B. The Weighted Concepts of Personal Ontology 65 Appendix C. The Recommendation Degree of Test Content 71

    [1] Alexander Pretschner and Susan Gauch, “Ontology Based Personalized Search”, Proc. 11th IEEE International Conference on Tools with Artificial Intelligence, Chicago, pp. 391-398, November 1999.

    [2] Charalampos Vassiliou, Dimitris Stamoulis, and Drakoulis Martakos, “The Process of Personalizing Web Content: Techniques, Workflow and Evaluation”, International Conference on Advance in Infrastructure for Electronic Business, Science, and Education on the Internet (SSGRR 2002w), L’Aquila, Italy, January 2002.

    [3] Waikit Koh and Lik Mui, “An Information Theoretic Approach to Ontology-based Interest Matching”, IJCAI’01 Workshop on Ontology Learning, Seattle, WA, August 2001.

    [4] Cyrus Shahabi and Farnoush Banaei-Kashani, “Efficient and Anonymous Web-Usage Mining for Web Personalization”, INFORMS Journal on Computing, Vol. 15, No.2, pp. 123-147, Spring 2003,

    [5] Barry Smyth and Paul Cotter, “A Personalized Television Listing Services”, Communications of the ACM, Vol. 43, No. 8, pp. 107-111, August 2000.

    [6] Chia-Hsin Liao, “Automatic Ontology Construction Approach and Its Application for Information Classification”, Master, Thesis, Department of Computer Science & Information Engineering, National Cheng Kung University, Taiwan, July 2002.

    [7] “Academia Sinica Balanced Corpus”, Technical Report, No. 95-02/98-04, Academia Sinica, Taiwan, 1998.

    [8] Jason Chaffee and Susan Gauch, “Personal Ontologies for Web Navigation”, Proc. 9th International Conference on Information and Knowledge Management McLean VA, pp. 227-234, November 2000.

    [9] Cyrus Shahabi, Adil Faisal, Farnoush Banaei-Kashani, and Jabed Faruque, “INSITE: A Tool for Real-Time Knowledge Discovery from Users Web Navigation”, Proceedings of the 26th International Conference on Very Large Databases, Cairo, Egypt, pp. 635-638, 2000.

    [10] Stephen Dill, Ravi Kumar, Kevin S. Mccurley, Sridhar Rajagopalan, D. Sivakumar, and Andrew Tomkins, “Self-Similarity In the Web”, ACM Transactions on Internet Technology, Vol. 2, No. 3, pp. 205-223, August 2002.

    [11] Seon-Mi Woo, Chun-Sik Yoo, and Yong-Sung Kim, “User-centered Filtering and Document Ranking”, Proceeding of the IEEE Region 10 Conference, Vol. 2, pp. 1059-1062, 1999.

    [12] Ricardo Baeza-Yates and Berthier Ribeiro-Neto, “Modern Information Retrieval”, Addison-Wesley-Longman Publishing Co. Inc., New York, 1999.

    [13] Gerard Salton and Christopher Buckley, “Term Weighting Approaches in Automatic Text Retrieval”, Information Processing and Management, Vol. 24, No. 5, pp. 513-523, 1988.

    [14] Michael W. Berry, Susan T. Dumais, and Gavin W. O’Brien, “Using Linear Algebra for Intelligent Information Retrieval”, SIAM Review, Vol. 37, No. 4, pp. 573-595, 1995.

    [15] Ah-Hwee Tan and Christine Teo, “Learning User Profiles for Personalized Information Dissemination”, In Proceedings, International Joint Conference on Neural Networks, Alaska, pp. 183-188, May 4-9, 1998.

    [16] Gunther Specht and Thomas Kahabka, “Information Filtering and Personalization in Database Using Gaussian Curves”, 2000 International Database Engineering and Application Symposium, IDEAS 2000, pp. 16-24, September 18-20, 2000.

    [17] Jeffrey C. Schlimmer and Leonard A. Hermens, “Software Agents: Completing Patterns and Constructing User Interfaces”, Journal of Artificial Intelligence Research, Vol. 1, pp. 61-89, November 1993.

    [18] Kristian Hammond, Robin Burke, and Kathryn Schmitt, “A Case-Based Approach to Knowledge Navigation”, Case-Based Reasoning Experiences Lessons and Future Directions, D. B. Leake, ed. MIT Press, Cambridge, Mass., pp. 125-136, 1996.

    [19] Harvey M. Deitel, Paul J. Deitel, and Kate Steinbuhler, “e-Business and e-commerce for Manages”, Prentice Hall, pp. 279, 2001.

    [20] B. Chandrasekaran, John R. Josephson, and V. Richard Benjamins, “What Are Ontologyes, and Why Do We Need Them?”, IEEE Intelligent Systems, Vol. 14, No. 1, pp. 20-26, Jan/Feb 1999.

    [21] B. Chandrasekaran, “AI, Knowledge, and the Quest for Smart Systems”, IEEE Expert, Vol. 9, No. 6, pp. 2-6, December 1994.

    [22] John McCarthy and Patrick J. Hayes, “Some Philosophical Problems from the Standpoint of Artificial Intelligence”, In B. Melzer and D. Michie, editors, Machine Intelligence Vol. 4, Edinburgh University Press, Edinburgh, pp. 463-502, 1969.

    [23] David Marr, “Vision: A Computational Investigation into the Human Representation and Processing of Visual Information”, W.H. Freman, San Francisco, 1982.

    [24] Allen Newell, “The Knowledge Level”, Artificial Intelligence, Vol. 18, pp. 87-127, 1982.

    [25] Kenneth C. Laudon and Jane P. Laudon, 周宣光譯, “Management Information Systems-Managing the Digital Firm”, Tung Hua, Taipei, 2002.

    [26] Yoon Ho Cho, Jae Kyeong Kim, and Soung Hie Kim, “A Personalized Recommender System Based on Web Usage Mining and Decision Tree Introduction”, Expert System with Applications, Vol. 23, pp. 329-342, 2002.

    [27] Wei-Po Lee, Chih-Hung Liu, and Cheng-Che Lu, “Intelligent Agent-based Systems for Personalized Recommendations in Internet Commerce”, Expert System with Applications, Vol. 22, pp. 275-284, 2002.

    [28] Hee Seok Song, Jae Kyeong Kim, and Soung Hie Kim, “Mining the Change of Customer Behavior in an Internet Shopping Mall”, Expert System with Applications, Vol. 21, pp. 157-168, 2001.

    [29] Y.-F. Kuo and L.-S. Chen, “Personalization Technology Application to Internet Content Provider”, Expert System with Applications, Vol. 21, pp. 203-215, 2001.

    [30] Magdalini Eirinaki and Michalis Vazirgiannis, “Web Mining for Web Personalization”, ACM Transactions on Internet Technology, Vol. 3, No. 1, pp. 1-27, February 2003.

    下載圖示 校內:立即公開
    校外:2003-08-14公開
    QR CODE